# Mathematics 133, Spring 2022, Examination 1 

Answer Key

1. [25 points] Suppose we are given a line $L$ in a plane $P$, and $A, B, C, D$ are distinct points of $P-L$ such that $A * X * B, B * Y * C$ and $C * Z * D$ hold for some points $X, Y, Z \in L$. Determine which of the points $B, C, D$ lie on the same side of $L$ (in $P$ ) as $A$, and give reasons for your answer.

## SOLUTION

Here is a drawing for the problem:


Since neither $A$ nor $B$ lies on $L$ and $X \in(A B) \cap L$, it follows that $(i)$ the points $A$ and $B$ lie on opposite sides of $L$. Furthermmore, since $Y \in(B C) \cap L$ and $Z \in(C D) \cap L$, it follows that $(i i)$ the points $B$ and $C$ lie on opposite sides of $L$ and (iii) the points $C$ and $D$ lie on opposite sides of $L$. By $(i)$ and (ii) we know that $A$ and $C$ both lie on the opposite side of $L$ as $B$, and by $(i i)$ and (iii) we know that $B$ and $D$ both lie on the opposite side of $L$ as $C$. Therefore $B$ and $D$ lie on the opposite side of $L$ as $A$. To summarize, $C$ is the only point which lies on the same side of $L$ as $A$.■
2. [25 points] Suppose that we are given lines $A C$ and $B D$ which meet at a point $E \in(A C) \cap(B D)$. Let $X$ and $Y$ satisfy $X * A * E$ and $Y * D * E$ respectively. Prove that $|\angle X A B|>|\angle D E C|$.

## SOLUTION

Here is a drawing for the problem:


By the Vertical Angle Theorem, $|\angle A E B|=|\angle C E D|$. Furthermore, by the Exterior Angle Theorem $|\angle X A B|>|\angle A E B|$. Combining these, we conclude that $|\angle X A B|>|\angle C E D|$.■
3. [25 points] Suppose that lines $A B$ and $B C$ are perpendicular, and suppose also that $D$ is a point on the same side (= half-plane) of $B C$ as $A$ such that $D \notin$ Interior $\angle A B C$ and $D \notin A B$. Determine which of the statements $\left|\angle D \boldsymbol{B} \boldsymbol{A}^{\prime}\right|>90^{\circ}$ or $|\angle D \boldsymbol{B} \boldsymbol{A}|<90^{\circ}$ is true and give reasons for your answer.

## SOLUTION

Let $E$ be a point such that $C * B * E$. Since $D$ and $A$ lie on the same side of $B C$ as $A$ but neither $D \notin$ Interior $\angle A B C$ nor $D \notin A B$, it follows that $D$ and $C$ lie on the same side of $A B$, it follows that $D \in$ Interior $\angle A B E$ (this was proved in the lectures).


By the Addition Postulate for angle measurement we have $|\angle D B \boldsymbol{A}|<|\angle A B E|$. Also, by the Supplement Postulate and $A B \perp B E(=B C)$, it follows that $|\angle A B E|=90^{\circ}$, and therefore we have $|\angle D \boldsymbol{B} \boldsymbol{A}|<90^{\circ}$. .
4. [25 points] Assume the plane under consideration is Euclidean, and suppose that we are given isosceles $\triangle A B C$ with $|A B|=|A C|$. Prove that $|A B|>|B C|$ if $|\angle B A C|<60^{\circ}$ and $|A B|<|B C|$ if $|\angle B A C|>60^{\circ}$.

## SOLUTION

Here are some drawings in which $|\angle B A C|$ varies:


Since $\triangle A B C$ is isosceles, we have $|\angle A B C|=|\angle A C B|$, and since we are assuming the Euclidean Parallel Postulate we also have

$$
180^{\circ}=|\angle A B C|+|\angle A C B|+|\angle A C B|=2 \cdot|\angle A B C|+|\angle A C B| .
$$

Since $|A B|=|A C|$, by the Isosceles Triangle Theorem we have $|\angle A B C|=|\angle A C B|$, so these equations may be rewritten in the form

$$
2 \cdot|\angle A C B|=180^{\circ}-|\angle B A C|
$$

If $|\angle B A C|<60^{\circ}$ then we must have $|\angle A C B|>60^{\circ}$, and since the longer side is opposite the larger angle it follows that $|A B|>|B C|$.

On the other hand, if $|\angle B A C|>60^{\circ}$ then we must have $|\angle A C B|<60^{\circ}$, and since the longer side is opposite the larger angle it follows that $|A B|<|B C|$..

