Mathematics 133, Spring 2022, Examination 1

~

Answer Key

1

1. [25 points] Suppose we are given a line L in a plane P, and A, B, C, D are distinct points of P - L such that A * X * B, B * Y * C and C * Z * D hold for some points $X, Y, Z \in L$. Determine which of the points B, C, D lie on the same side of L (in P) as A, and give reasons for your answer.

SOLUTION

Here is a drawing for the problem:

Since neither A nor B lies on L and $X \in (AB) \cap L$, it follows that (i) the points A and B lie on opposite sides of L. Furthermmore, since $Y \in (BC) \cap L$ and $Z \in (CD) \cap L$, it follows that (ii) the points B and C lie on opposite sides of L and (iii) the points C and D lie on opposite sides of L. By (i) and (ii) we know that A and C both lie on the opposite side of L as B, and by (ii) and (iii) we know that B and D both lie on the opposite side of L as C. Therefore B and D lie on the opposite side of L as A. To summarize, C is the only point which lies on the same side of L as A.

2. [25 points] Suppose that we are given lines AC and BD which meet at a point $E \in (AC) \cap (BD)$. Let X and Y satisfy X * A * E and Y * D * E respectively. Prove that $|\angle XAB| > |\angle DEC|$.

SOLUTION

Here is a drawing for the problem:

By the Vertical Angle Theorem, $|\angle AEB| = |\angle CED|$. Furthermore, by the Exterior Angle Theorem $|\angle XAB| > |\angle AEB|$. Combining these, we conclude that $|\angle XAB| > |\angle CED|$.

3. [25 points] Suppose that lines AB and BC are perpendicular, and suppose also that D is a point on the same side (= half-plane) of BC as A such that $D \notin$ Interior $\angle ABC$ and $D \notin AB$. Determine which of the statements $|\angle DBA'| > 90^\circ$ or $|\angle DBA| < 90^\circ$ is true and give reasons for your answer.

SOLUTION

Let *E* be a point such that C * B * E. Since *D* and *A* lie on the same side of *BC* as *A* but neither $D \notin$ Interior $\angle ABC$ nor $D \notin AB$, it follows that *D* and *C* lie on the same side of *AB*, it follows that $D \in$ Interior $\angle ABE$ (this was proved in the lectures).

By the Addition Postulate for angle measurement we have $|\angle DBA| < |\angle ABE|$. Also, by the Supplement Postulate and $AB \perp BE(=BC)$, it follows that $|\angle ABE| = 90^{\circ}$, and therefore we have $|\angle DBA| < 90^{\circ}$.

4

4. [25 points] Assume the plane under consideration is Euclidean, and suppose that we are given isosceles $\triangle ABC$ with |AB| = |AC|. Prove that |AB| > |BC| if $|\angle BAC| < 60^{\circ}$ and |AB| < |BC| if $|\angle BAC| > 60^{\circ}$.

SOLUTION

Here are some drawings in which $|\angle BAC|$ varies:

Since $\triangle ABC$ is isosceles, we have $|\angle ABC| = |\angle ACB|$, and since we are assuming the Euclidean Parallel Postulate we also have

$$180^{\circ} = |\angle ABC| + |\angle ACB| + |\angle ACB| = 2 \cdot |\angle ABC| + |\angle ACB|.$$

Since |AB| = |AC|, by the Isosceles Triangle Theorem we have $|\angle ABC| = |\angle ACB|$, so these equations may be rewritten in the form

$$2 \cdot |\angle ACB| = 180^{\circ} - |\angle BAC|.$$

If $|\angle BAC| < 60^{\circ}$ then we must have $|\angle ACB| > 60^{\circ}$, and since the longer side is opposite the larger angle it follows that |AB| > |BC|.

On the other hand, if $|\angle BAC| > 60^{\circ}$ then we must have $|\angle ACB| < 60^{\circ}$, and since the longer side is opposite the larger angle it follows that |AB| < |BC|.

5