Quiz 1, Spring 2022

Let L be a line in a plane satisfying the Incidence Axioms and the Ruler Postulate, let A and B be two distinct points on L, and let f be a real valued ruler function on L such that f(A) < f(B).

- (1) State a numerical inequality such that X lies on the ray [BA] if and only if f(X) satisfies this inequality.
- (2) Let $C \in L$ be such that A * B * C holds. State a numerical inequality such that X lies on the ray [BC] if and only if f(X) satisfies this inequality.

SOLUTIONS

(1) The quickest way to answer this is to consider the points of BA which do not lie on [BA]. These are the points for which X * A * B is false. Now we know that X * A * B is false if and only if both f(A) < f(B) < f(X) and f(X) < f(B) < f(A) are false. Since f(A) < f(B) was assumed, the condition for $X \notin [BA]$ reduces to the property that f(A) < f(B) < f(X) is false. Therefore $X \in [BA]$ is true if and only if $f(X) \leq f(B)$.

(2) Since A * B * C holds if and only if f(A) < f(B) < f(C) or f(C) < f(B) < f(A)and we know that f(A) < f(B), it follows that f(B) < f(C). As in (1), a point X does not lie on [BC if and only if X * B * C is false; in other words, this happens if and only if f(X) < f(B) is false since f(B) < f(C). Therefore $X \in [BC]$ is true if and only if $f(X) \ge f(B)$.

1