Math 133, Fall 2018, Quiz 3

Suppose we are given isosceles triangle $A B C$ in the coordinate plane, where $A=(0,2)$, $B=(-1,0)$ and $C=(1,0)$; denote $(0,0)$ by Q. Let $E \in(A C)$ be chosen such that $[\mathrm{BE}$ bisects $\angle A B C$. Find the length $|A E|$.

Solution. By Theorem III.5.13 in the course notes, we know that

$$
\frac{|B A|}{|B C|}=\frac{|A E|}{|E C|}
$$

Furthermore, since $A Q \perp B C$ by construction, by the Pythagorean Theorem we have

$$
|A B|^{2}=|A Q|^{2}+|B Q|^{2}=1+4=5
$$

and by construction we clearly also have $|B C|=2$. This yields the following equation:

$$
\frac{|A E|}{|E C|}=\frac{\sqrt{5}}{2}
$$

Now we also have $|B C|=\sqrt{5}$ because $\triangle A B C$ is isosceles, and furthermore $A * E * C$ implies that $|A E|+|E C|=\sqrt{5}$. If we set $x=|A E|$, we then have the following equation for x :

$$
\frac{x}{\sqrt{5}-x}=\frac{\sqrt{5}}{2}
$$

If we multiply both sides by the product of the denominators, we obtain a linear equation in x :

$$
2 x=\sqrt{5}(\sqrt{5}-x)
$$

Since $(\sqrt{5}+2)(\sqrt{5}-2)=1$, the solution to this equation is $x=5(\sqrt{5}-2)$, and by construction the right hand side is also equal to $|A E|$. Since $\sqrt{5}-2$ is well within .01 per cent of the approximation 0.2360679774997896964 , it follows that $|A E|$ is very close to $1.180339887498948432 . ■$

