L_{2-1} Undefined concepts Earlied to define everything - not formally possible 20 geometry - Assume grava set P, call its member paints. (Nonempty!) Also assume we are given a family of subset we shall call lines, L= proper proper Subcets Assume the following axioms (Incidence) (I1) Given two distinct points, there is a migue line containing them. (I2) Every line contains = 2 points. Models for assions I deally, and ineny geometry Also, S= st with 3 elements, L= all subject with exactly two elements. NOTATION Xy= line cont. xty Only one noteworthy theorem. D L≠M are lines in P, then InM has at most one point.

Note: We can also prove that P has at least 3 points as follows: There is at least one line in P, and it has at least two points. But there is also a point in P not on L. This yields a third point of P.

LZ-2

The proof	Proof Say x = y, both in LnM.
shows the contraposi	Sug r g win in Littel,
tive of the	DIZTORI L'ANGRA
thm., and	By I3 there is only one line N so x, y E N. But L& M have this property. Somuet have
the latter is	But L& M have this property. Somuet have
equiv. to	
the stated	L=M. COLLINEAR SET A, AS LI someline.
theorem.	
	3D geometry S honempty cot
	3D grometry S nonempty cot J = proper (ubset family P = another one, disjoint from d
	D i p i p i r i con i p
	J= anothing che,
	disjonit tran d
	First two axions plus
	(I3) Given a non collinear subset {x, y, z}=B,
	thre is a unique plane P containing B.
	(I4) It x, y distinct in P, then I xy EP.
	tet and ous rower work y row xy = ,
	(TE) DP 10 15 - 110LA
	(I5) D Pand Q are planes such that P=Q
	then Prodisa line, or empty.
	X X
	TA IS
	(I6) Everyplane has >3 points.

As in the 2-dim case, in the 3-dim case we can show that S has at least 4 points. There is a plane L2-3 P in S and it has three points, and there is a fourth point which is in S but not in P. Two consequences (i) Fiven line L and x4L, there is a unique plane P so LEP and xeP. (2) If two distinct lines meet at a single pt. then they determine a plane. (1)(2)户 Pictures make logic transparant, but are not proofs them salves. Now we need to add more data Portance Postulates Rules Postulate Distance d'SXS > [0,00) given d(x,y)>0, equality => x=y d(x,y)= d(y,x), [No triangle inequality yet] Ruley There are 1-1 correspondences fil (each fine) <> R so that $d(x, y) = \{f(x) - f(y)\}$

62-4 (Placement) Strong Rule Property Given X + ymil, can fuid f so that f(x) = 0, f(y) > 0. How to derive this conclusion Take any for Let E_= 1 if fo(x) < fo(y), E_1 = -1 otherwise. Check that $q(t) = \varepsilon_0 [f_0(t) - f_0(\mathbf{x})] \quad j \leq 1 - l$ and $d(t_1, t_2) = |q(t_1) - q(t_2)|$. $\frac{1-1}{2}g(t_1) = g(t_2) \Longrightarrow \varepsilon \left[f_0(t_1) - f_0(x)\right] = \varepsilon \left[f_0(t_2) - f_0(x)\right] = \varepsilon \left[f_0(t_2) - f_0(x)\right]$ $= \sum f_0(t_1) - f_0(x) = f_0(t_1) - f_0(x) \Longrightarrow f_0(t_1) = f_0(t_2) \Longrightarrow$ t,=tr since for 1-1. onto Let a ER. Want a= [folt)-fo(x) = some Well, $\varepsilon_{o} \alpha = f_{o}(t) - f_{o}(x), \quad \varepsilon_{o} \alpha + f_{o}(x) = f(t)$ Euggeste the night clooice of t. Substitute (work back words) to verify that a=g(t). distance preserving d(ts, t2) = [f(t2) - fo(t2)] is quen.

 $L_{2}-5$ $P.H.S. = [f_{0}(t_{1}) - f_{0}(x)] - [f_{1}(t_{2}) - f_{1}(t_{2})] - [f_{1}(t_{2}) - f_{1}(t_{2})] - [f_{1}(t_{2}) - f_{2}(t_{2})] - [f_{2}(t_{2}) - f_{2}(t_{2}) - f_{2}(t_{2}) - f_{2}(t_{2}) - f_{2}(t_{2})] - [f_{2}(t_{2}) - f_{2}(t_{2}) - f_{2}(t_{2})$ El= 1 means this r $\varepsilon_0\left(\frac{f_0(t_1)-f_0(x)}{f_0(t_2)}-\frac{f_0(t_2)-f_0(x)}{f_0(x)}\right)$ $\varepsilon_{o} \left[f_{o}(t_{i}) - f_{o}(x) \right] - \varepsilon_{o} \left[f_{o}(t_{i}) - f_{o}(x) \right]$ $lq(t_1) - q(t_2)$ My de we need this? Give three points on a line, we "see" that one is between the other two. This was only discussed casually in Euclid, but it is K absolutely essential for a logically sound treatment of classical geometry. RECALL When IT a+b= a+b= with -Either a, b 20 or a, b 50. Define a + b * c (b is between a + c) =) d(a,c) = d(a,b) + d(b,c)This gives us all we need. The following properties are "obvious" but an ast be verified.

L2 - 6Betweenness and ruler functions Theorem On line L with ruler function f, axbxc => f(a)<f(b)<f(c) or f(b) > f(b) > f(c). Derivation 1p+q1=1p1+1q1=> $p,q \ge 0$ or $p,q \le 0$. Now let p = f(a) - f(b)1 q= f(b)-f(c), so p+q= f(a) - f(c) and $l_{p+q} = l_{p} + l_{q} \iff d(a, c) = d(a, b) + d(a, c).$ The case p, q 20 corresponds to f(a)> f(k)> f(c), and p,q <0 comesponds to fla) < flb) < flc). Theorem Fiven 1>, q g r on L, onet only one refetween the other two. Proof Six cases Sup chy chr flatt < flat flgKflp)<d(2) f(p) >f(q) >f(q) >f(q) >f(p) f(g) > f(p) > f(r)g between i between p between

12-7 The following are typical applications which are needed for more substantial results. (1) attac + faxxe = atxxc First Find rule fen es fla) < flb). By previous have fla) <flb) <flc) Non baxes = athen flb) <fle) or f(A)>f(x)>f(c). Second violates previous conclusion, so f(a)<f(A)< f(c)<f(c). (2) $a \neq x \neq c \neq a \neq y \neq c \Longrightarrow a \neq x \neq y \text{ or } a \neq y \neq x$. Choose rules f(a) = 0, f(c) > 0. $O \leq f(x) \leq f(c)$ Why? $O \leq f(y) \leq f(c)$ Why? So pither O< f(x)< f(y) or O< f(y)< f(x). See Dictionany lecture02a.pdf A+B, fruler with tat flot >fla) for a cleaned Chosed seqt [AB] x=a, b ora ** * b (x) E [f(a), f(b)] up version of open segt (AB) $\begin{array}{ccc} a + x + b & f(x) \in (f(a), f(b)) \\ x = a, a + x + b, x = b, a + b + x & f(x) \in [f(a), f(b)) \end{array}$ flat flat flat) this material. dused ray EAB Open ray (AB opp cloced ray EAB^{OP} opp cloced ray EAB^{OP} ×G [AB-ZA'S flwE[-ob, Flas] X= A or XEL-(AB f(x) & (-oo, fla)] cipp and ruy (AB X EABER ZAS f(x) E (-ao, fla)) XEL-LAB