Undefined concepts
Euclid tried to define erangthing - not formally poss ible
$2 D$ geometry - Assume giver a set T, call its members points (Nonempty!) nonempty
Also assume we are given a family of proper subsets we shall call lines: $\mathcal{L}=$

Assume the following axioms (Incidence)
(I1) Given trod distinct points, there is a
unique line containing them.
(I2) Every line contain $\geqslant 2$ points.
Models for axioms. Ide ally, ordinary geometry
Also, $S=$ et with $\geqslant 3$ elements, $\mathcal{L}=$ all
subset with exactly two elements.
s.. and many mare...

NOTATION $x y=$ lime cont. xt y
Only one noteworthy theorem.
If $L \neq M$ are limes in P, then In M has at most un paint.

Note: We can also prove that P has at least 3 points as follows: There is at least one line in P , and it has at least two points. But there is also a point in P not on L . This yields a third point of P .

The proof
shows the Proof Say $x \neq y$, both in LcM. contraposi five of the the., and the latter is equiv. to the stated theorem.

By I3 there is only one line N so $x, y \in M$.
But L \& M have this property. So mat hare

$$
L=M . \quad C O L L N E A R \operatorname{SET} A, A \subseteq L \text { s some line. }
$$

31) geometry S nonempty cot

$$
\begin{aligned}
& \mathcal{L}=\text { proper cubset family } \\
& P=
\end{aligned}
$$

$$
P=\text { anothergons, }
$$

disjoint from L
First two axioms plus
(I3) Giver a non collinear subset $\{x, y, z\}=B$, there is a unique plane P cant a living B.
(I4) In x, y distinct in P, then $\mid x y \subseteq P$.
(I5) If P and Q are planes such that $P \neq Q$ then $P \wedge Q$ is a line or empty.

(I 6) Every plane has $\geqslant 3$ points.

As in the 2-dim case, in the 3-dim case we can show that S has at least 4 points. There is a plane P in S and it has three points, and there is a fourth point which is in S but not in P.

Two consequences (i) Given line L and $x \notin L$, there is a unique plane P so $L \subseteq P$ and $x \in P$.
(2) If two distinct lines meet at a single pt .i Thun they determine ap tame.
(1)

(2)

Pictures make logietrauspanant, but are not proofs than salves!

Now we need to add were data
Distance Postulates
Ruler Postulate
Distance d:SxS $\rightarrow[0, \infty)$ give

$$
\begin{aligned}
& d(x, y) \geqslant 0, \text { equality } \Leftrightarrow x=y \\
& d(x, y)=d(y, x), \quad\left[N_{0} \text { trianglerivequality yt }+1\right]
\end{aligned}
$$

Ruler There are 1-1 courespanduces

$$
\begin{aligned}
f: L(\text { each hin }) & \longleftrightarrow \mathbb{R} \text { so that } \\
d(x, y) & =|f(x)-f(y)|
\end{aligned}
$$

(Placement)
Strong Rula-Property
Given $x \neq y$ in L, can fid $f s o$
that $f(x)=0, f(y)>0$.
How to dense this conclusion Take any f_{0} Let $\varepsilon_{0}=1$ if $f_{0}(x)<f_{6}(y), \varepsilon_{1}=-1$ otherwise. Chock that $g(t)=\varepsilon_{0}\left[f_{0}(t)-f_{0}(\mathbf{x})\right]$ is $1-1$ and $d\left(t_{1}, t_{2}\right)=\left|g\left(t_{1}\right)-g\left(t_{2}\right)\right|$.

$$
\begin{aligned}
& 1-1 \\
& g\left(t_{1}\right)=g\left(t_{2}\right) \Rightarrow \\
& \varepsilon_{0}\left[f_{0}\left(t_{1}\right)-f_{0}(x)\right]= \\
& \varepsilon_{0}\left[f_{0}\left(t_{2}\right)-f_{0}(x)\right] \\
& \Rightarrow f_{0}\left(t_{1}\right)-f_{0}(x)=f_{0}\left(t_{2}\right)-f_{0}(x) \Rightarrow f_{0}\left(t_{1}\right)=f_{0}\left(t_{2}\right) \Rightarrow \\
& t_{1}=t_{2} \text { since } f_{0} \text { is } 1-1 .
\end{aligned}
$$

onto Let $a \in \mathbb{R}$. Want $a=\left[f_{0}(t)-f_{0}(x)\right] \varepsilon_{0}$ sane Well, $\varepsilon_{0} a=f_{0}(t)-f_{0}(x), \varepsilon_{0} a t f_{0}(x)=f(t)$ Suggests the right coo ice of t. Substitute (wank back ward 1) to whifys that $a=g(t)$.
distancepresering $d\left(t_{1}, t_{2}\right)=\left|f_{0}\left(t_{1}\right)-f_{0}\left(t_{2}\right)\right|$ is given.

$$
\begin{aligned}
& \text { P.H.S }=\left|\left[f_{0}\left(t_{1}\right)-f_{0}(x)\right]-\left[f_{0}\left(t_{2}\right)-f_{0}(x)\right]\right| \\
& \text { and }\left|\varepsilon_{0}\right|=1 \text { maw +his r } \\
& \left|\varepsilon_{0}\left(f_{0}\left(t_{1}\right)-f_{0}(x)\right]-\left[f_{0}\left(t_{2}\right)-f_{0}(x)\right]\right|= \\
& \left|\varepsilon_{0}\left[f_{0}\left(t_{1}\right)-f_{0}(x)\right]-\varepsilon_{0}\left[f_{0}\left(t_{2}\right)-f_{0}(x)\right]\right|= \\
& \left|g\left(t_{1}\right)-g\left(t_{2}\right)\right|
\end{aligned}
$$

Why de we need this?
Giver three paints an a line, we "see" that one is between the other two. This was only discussed caswally in Euclid, but it is absolutely essential tor a logic ally sound treat mont of classic al geometry.
RECALL When is $|a+b|=|a|+|b|$ in \mathbb{R} ? Either $a, b \geqslant 0 \underset{\equiv}{\equiv} a, b \leq 0$.
Define $a+b * c(b$ is between $a+c) \Leftrightarrow$

$$
d(a, c)=d(a, b)+d(b, c) .
$$

This gives all we nub. The following properties are "obvious" but anast be verified.

Betweenness and ruler functions
Theorem On line L with ruler function, $a * b * c \Leftarrow f(a)<f(b)<f(c)$ or $f(a)>f(b)>f(c)$.

Derivation $|p+q|=|p|+|q| \Longleftrightarrow$
$p, q \geqslant 0$ or $p, q \leqslant 0$. Noun let $p=f(a)-f(b)$

$$
\begin{aligned}
& \text { I } q=f(b)-f(c) \text {, so } p+q=f(a)-f(c) \text { and } \\
& |p+q|=|p|+|q| \Leftrightarrow d(a, c)=d(a, b)+d(a, c) .
\end{aligned}
$$

The case $p, q \geq 0$ corresponds to $f(a)>f(k)>f(c)$, and $p, q \leq 0$ corresponds to $f(a)<f(b)<f(c)$.
Theorem Given $1>1 q$ distance L an , onetonly we is between the other two.
Proof Six cures
$f(p)<f(g)<f(r) \quad f(q)<f(r)<f(p) \quad f(q)<f(p)<f(r)$

$$
f(p \gg f(q) \geqslant f(r) \quad f(0)>f(r) \geq f(p) \quad f(q)>f(p)>f(r)
$$

quotureen r between p between

The following are typical appliactions which are needed for more substantial results.
(1) $a * b * c$ of $b^{*} x * c \Rightarrow a * x * c$

First Find ruler fin es $f(a)<f(b)$.
By peravioul, hare $f(a)<f(b)<f(c)$.
Now $b-x+c \Rightarrow$ either $f(b)<f(x)<f(e)$ or
$f(l)>f(x)>f(c)$. Second violates previous conclusion, so $f(a)<f(b)<f(x)<f(c)$.
(2) $a * x * c+a^{*} y * c \Rightarrow a^{*} x^{*} y$ or $a * y * x$.

Clove voles $f(a)=0, f(c)>0$.

$$
\begin{aligned}
& \begin{array}{l}
0<f(x)<f(c) \\
0<f(y)<f(e)
\end{array} \text { Why? } \\
& \text { So Rather } 0<f(x)<f(y) \text { or } 0<f(y)<f(x) \text {. } \\
& \text { Dictionang } \\
& \text { open sgt }(A B) \quad a+x+b \quad f(x) \in(f(a), f(b)) \\
& \begin{array}{ccc}
\text { closed ray }[A B & x=a, a * x+b, x=b, a+b-b x & f(x) \in[f(a), f(1)) \\
\text { open ray }(A B & x \in[A B-\{A\} & f(x) \in(-\infty, f(a)]
\end{array} \\
& \text { opp coed nay }\left[A B^{\circ P}\right. \\
& \text { open empery lab op } \\
& \begin{array}{ll}
x=A \operatorname{Ar} x L-\{A B & f(x) \in(-\infty, f(a)] \\
x \in \in A\} & f(x) \in(-\infty, f(a)) \\
x \in L-[A B &
\end{array}
\end{aligned}
$$

