MORE EXERCISES FOR WEEK 02

Assume that $(\mathbf{S}; \mathcal{P}; \mathcal{L}; d; \alpha)$ or $(\mathbf{P}; \mathcal{L}; d; \alpha)$ is a system which satisfies the Incidence, Ruler, Plane or Space Separation (as appropriate), Angle Measurement and Triangle Congruence Axioms.

11. If $\triangle ABC$ and line L lie in the same plane, prove that their intersection cannot contain points in each of (AB), (AC) and (BC).

12. Suppose $\triangle ABC$ is an isosceles triangle with |AC| = |BC|, and let *D* and *E* denote the midpoints of [AC] and [BC] respectively. Prove that $\triangle DAB \cong \triangle EBA$.

13. Suppose that we are given $\triangle ABC$ with B * A * D and B * C * E, and suppose that $X \in (AC)$. Prove that there is a point $Y \in (ED)$ such that B * X * Y.

14. Suppose we are given isosceles triangle $|\triangle ABC|$ in the plane with |AB| = |AC|, and let D be the midpoint of [BC]. Prove that the ray [AD bisects $|\angle BAC|$: $|\angle BAD| = |\angle DAC| = \frac{1}{2} |\angle BAC|$.

15. Suppose that we are given points A, B, C, D in a plane such that A and D lie on opposite sides of BC and $|\angle ABC| = 180^{\circ} - |\angle DBC|$. Prove that A, B and D are collinear, and in fact A * B * D holds.