MORE EXERCISES FOR WEEK 02

Assume that $(\mathbf{S} ; \mathcal{P} ; \mathcal{L} ; d ; \alpha)$ or $(\mathbf{P} ; \mathcal{L} ; d ; \alpha)$ is a system which satisfies the Incidence, Ruler, Plane or Space Separation (as appropriate), Angle Measurement and Triangle Congruence Axioms.
11. If $\triangle A B C$ and line L lie in the same plane, prove that their intersection cannot contain points in each of $(A B),(A C)$ and $(B C)$.
12. Suppose $\triangle A B C$ is an isosceles triangle with $|A C|=|B C|$, and let D and E denote the midpoints of $[A C]$ and $[B C]$ respectively. Prove that $\triangle D A B \cong \triangle E B A$.
13. Suppose that we are given $\triangle A B C$ with $B * A * D$ and $B * C * E$, and suppose that $X \in(A C)$. Prove that there is a point $Y \in(E D)$ such that $B * X * Y$.
14. Suppose we are given isosceles triangle $|\triangle A B C|$ in the plane with $|A B|=|A C|$, and let D be the midpoint of $[B C]$. Prove that the ray $\left[A D\right.$ bisects $|\angle B A C|:|\angle B A D|=|\angle D A C|=\frac{1}{2}|\angle B A C|$.
15. Suppose that we are given points A, B, C, D in a plane such that A and D lie on opposite sides of $B C$ and $|\angle A B C|=180^{\circ}-|\angle D B C|$. Prove that A, B and D are collinear, and in fact $A * B * D$ holds.

