PROPERTIES OF TRIANGLE CONGRUENCE

Here are some details for statements from Lecture 04 . We noted that $\triangle A B C \cong$ $\triangle D E F$ does not necessarily imply statements like $\triangle A C B \cong \triangle D E F$; if both statements are true then we have $|A B|=|D E|$ and $|A C|=|D E|$, so that $|A B|=\mid A C$, and we know that there are triangles for which this equation is not valid. However, we noted that if the vertices of both triangles are rearranged in the same fashion, then one does get a valid new congruence statement' Here is a list of all the congruence statements that are equivalent to $\triangle A B C \cong \triangle D E F$:

$$
\begin{aligned}
& \triangle A C B \cong \triangle D F E \\
& \triangle B A C \cong \triangle E D F \\
& \triangle B C A \cong \triangle E F D \\
& \triangle C A B \cong \triangle F D E \\
& \triangle C B A \cong \triangle F E D
\end{aligned}
$$

No other statements about rearrangements (for example $\triangle A B C \cong \triangle F E D$) are valid for ALL triangles satisfying $\triangle A B C \cong \triangle D E F$.

And here are the details for verifying the equivalence properties of congruent triangles:
$\triangle A B C \cong \triangle A B C: \quad$ This is true because $|A B|=|A B|,|B C|=|B C|,|A C|=|A C|$, $|\angle B A C|=|\angle B A C|,|\angle A B C|=|\angle A B C|$, and $|\angle A C B|=|\angle A C B|$.
$\triangle A B C \cong \triangle D E F$ implies $\triangle D E F \cong \triangle A B C$: This is true because $|A B|=|D E|$, $|B C|=|E F|,|A C|=|D F|,|\angle B A C|=|\angle E D F|,|\angle A B C|=|\angle D E F|$, and $|\angle A C B|=$ $|\angle D F E|$ imply $|D E|=|A B|,|E F|=|B C|,|D F|=|A C|,|\angle E D F|=|\angle B A C|,|\angle D E F|=$ $|\angle A B C|$, and $|\angle D F E|=|\angle A C B|$.
$\triangle A B C \cong \triangle D E F$ and $\triangle D E F \cong \triangle G H K$ imply $\triangle A B C \cong \triangle G H K$: This is true because we have $|A B|=|D E|=|G H|,|B C|=|E F|=|H K|,|A C|=|D F|=$ $|G K|,|\angle B A C|=|\angle E D F|=|\angle H G K|,|\angle A B C|=|\angle D E F|=|\angle G H K|$, and $|\angle A C B|=$ $|\angle D F E|=|\angle G K H| . ■$

