MORE SOLUTIONS FOR WEEK 02 EXERCISES

Assume that $(\mathbf{S} ; \mathcal{P} ; \mathcal{L} ; d ; \alpha)$ or $(\mathbf{P} ; \mathcal{L} ; d ; \alpha)$ is a system which satisfies the Incidence, Ruler, Plane or Space Separation (as appropriate), Angle Measurement and Triangle Congruence Axioms.
11. Assume that L contains points in each of $(A B),(A C)$ and $(B C)$. Since L contains a point in each of $(A B),(A C)$ then both B and C lie on the side of L opposite A. By convexity the side containing B and C also includes all points of $(B C)$. Therefore L cannot contain a point of $(B C)$, which contradicts the first sentence. Therefore L cannot contain points in each of $(A B),(A C)$ and $(B C) . ■$
12. The midpoint conditions implies that $|D A|=\frac{1}{2}|A C|=\frac{1}{2}|B C|=|E B|$. If we combine this with the tribial identity $|A B|=|B A|$ and the isosceles triangle hypothesis, we conclude that $\triangle D A B \cong \triangle E B A$ by SSS.■
13. Here is a drawing which reflects the hypotheses.

By constuction we have $D \in(B A$ and $E \in(B C$, and since $A * X * C$ we also have $X \in \operatorname{Int} \angle A B C$. Therefore the Crossbar Theorem implies that there is a point $Y \in(E D) \cap(B X$. It remains to verify that $B * X * Y$.

We shall do this by eliminating the other possibilities, which are $B * Y * X$ and $X=Y$. To see that $X \neq Y$, observe that $B * A * D$ and $B * C * E$ imply that A, B, C all lie on the same side of $D E$; since $A * X * C$, by convexity we also know that X lies on this side of $D E$. Therefore $X \notin D E$ but $Y \in D E$, so that $X \neq Y$.

If $B * Y * X$ we true, then B and X would be on opposite sides of $D E$. However, this contradicts the conclusions in the preceding paragraph, and hence we must have $B * X * Y$. .
14. By Exercise 12 we have $\triangle A B D \cong \triangle A C D$, and also $D \in \operatorname{Int} \angle B A C$. This implies $|\angle B A D|=$ $|\angle D A C|$ and by the Additivity Postulate for angle meaures we also have

$$
|\angle B A C|=|\angle B A D|+|\angle D A C|=2|\angle B A D|=2|\angle D A C|
$$

If we multiply each of these equations by $\frac{1}{2}$ we see that $|\angle B A D|=|\angle D A C|=\frac{1}{2}|\angle B A C|$. -
15. Let E satisfy $A * B * E$; by the Supplement Postulate we have $|\angle A B C|=180^{\circ}-|\angle E B C|$, and we also know that neither D nor E lies on the same side of $B C$ as A (also $E \notin B C$).

By the Protractor Postulate there is only one ray $[B X$ such that ($B X \subset\{D, E\}-$ side $B C$ and $|\angle X B C|=180^{\circ}-|\angle A B C|$. Since $[B D$ and $[B E$ both have this property, these rays must be equal. This means that D lies on the line containing A, B and E, or equivalently E lies on the line containing A, B and D. Finally, since $(B E$ is the set of all Y such that $A * B * Y$ and $[B D$ and [$B E$ it follows that $A * B * D$ holds.■

