Angle measurement
Axioms Given A, B, C nowcollinear, there is a number $|\triangle A B C|$ between O and 180 with the following properties:
(AMO) If $D \in(B A+E \in(B C$, so that

$$
\angle A D C=X D B E \text { ar sods then }|\angle A B C|=|\triangle D B E| \text {. }
$$

Important to distinguish between $|X A B C|=|X X Y Z|$ and (stranger $\triangle A B C=Z X Y Z$!

Also $\left|X_{A B C}\right|=\mid \triangle C B A l_{0}$
(am 1) Protractor Postulate. If $0<x<180$ and A, B, D mon colliniew, then their is a unique ray $(B C \subseteq D$-side $A B$ so $|\angle A B C|=x$.

(AMD) ADDITIVITY
$D \in \operatorname{Dat} \triangle A B C \Rightarrow$

$$
|\angle A B C|=|\Varangle A R D|+|\angle D B C| \text {. }
$$

(am) Supplement Property E*B*C

$$
+A \& B C \Rightarrow|\forall A B C|+|\forall A B E|=180
$$

Recall IBCV[RE not an angle in our sense. Likewise for $E D D U B C$ if $E B D=E R C$.

Consequences
Vertical Angle Theorem. Given $A * X * C$
$A C \in D$ and $B * X * D$. Then $|X A X B|=|\alpha C X D|$.

Proof (One of the earliest)

$$
|\Varangle A \times B|+|\angle A \times D|=180=|2 C \times D|+|2 A \times D|
$$

by Supp Property. Subtract 1 FAXD I from the left and right sides.
Angle measure comparison: C, D on Same side of $A B$. Then $|\triangle D A B|<|X C A B| \Leftrightarrow$ $D \in I_{n t}+C A B$.
Proof. Protractor \Rightarrow (equal measures $\Leftrightarrow[A C=[A D)$ Additivity $\Rightarrow\left(\left|\angle D_{A} B\right|<|\angle C A B|\right.$ of $\left.D \in I_{n}+X C A B\right)$.

$E * B * A \mid A$ side $B C$
$A \notin E$ on op sides $B C$ since $E * B * A$ Hence $D \not A A$ up prides $\Rightarrow D \not E$ Same side. Hence $D \in$ Int $\triangle E B C$ log def of interior.
This means $|\forall D B E|<|\angle C B E|$ by additivity. Apply Supp Pro panty to conclude

$$
|80-|\triangle A B D|<180-|4 A B C|
$$

By algebra $|\triangle A B C|<|\triangle A B D|$.
Exercise Show $C \in I_{n}+K A B D$ unsung these ideas.
Relatuig linear and angular measure.
Congruence axioms Write $\triangle A B C \cong \triangle D E F$

$$
\begin{aligned}
& \text { if }|A B|=|D E|,|A C|=|D F|,|B C|=|E F| \text { and } \\
& |\triangle B A C|=|\forall E D F|,|\triangle A B C|=|\Varangle D E F|,|\angle A C B|=|X D| E \mid \\
&
\end{aligned}
$$

The vertices must be ordereal convistantly. in the statement!!

In other words $\triangle A B C \cong \triangle D E F$ is not equivalui to $\triangle A B C N \triangle D F E$, etc., but it is equivalent to $\triangle A C B \cong \triangle D F E_{\text {. }}$
Three Axioms. If any of $(S A S)|\angle A B C|=|\angle D E F|,|A B|=|D E||A C|=|D F|$, $(A S A)|\triangle A B C|=|\angle D E F|,|A B|=|D E|,|\triangle B A C|=|\angle E D|$, (SSS| $|A B|=|D E|,|A C|=|D F|,|B C|=|E F|$ hold, then $\triangle A B C \cong \triangle D E F$. In fact, any one of these implies the other two, but no attempt to do so in this comose.

Wi th out something like this, linear taugular measurement might have nothing to do with each other.

Eudid argued the first is true by assenting one triangle can be moved to be nicely placed with respect to the other But he never made any assumptions about a concept of rigid motion!

Propention of $\cong \triangle A B C \cong \triangle A B C, \triangle A B C \cong \triangle D E F$ $\Rightarrow \triangle D E F \cong \triangle A B C, \triangle A B C \triangle D E F$ and $\triangle D E F \cong$
$\triangle G H E \Rightarrow \triangle A B C \cong \triangle G H K$ (equivalence relation). We allow $\{A, B, C\}=\{D, E, F\}$.
Isosceles Triangle theorem In $\triangle A B C$,

$$
|A B|=|A C| \Leftrightarrow|\triangle A B C|=|\triangle A C B| .
$$

Proof $(\Rightarrow) \triangle A B C \cong \triangle A C B$ because $\triangle A B C=$ $\not \boxed{A C B}$ and SAS. (\Leftrightarrow) same conclusion since $[B C]=[C B]$ and $A S A$.
Perpendicularity Lines $A B \neq B C$ $A B \perp B C$ means $|\angle A B C|=90^{\circ}$
Key Property Suppose $A B \perp B C$ and

Proof $|\triangle F B A|+|\angle A B C|=180^{\circ} \Rightarrow|\triangle F B A|=90^{\circ}$

$$
|\triangle E B C|+|\triangle A B C|=180^{\circ} \Rightarrow|\triangle E B C|=90^{\circ}
$$

$$
\begin{aligned}
& |\triangle E B C|+|\triangle A B C|=180^{\circ} \Rightarrow|\triangle E B C|=40^{\circ} \\
& 90^{\circ}=|\triangle A B C|=|\triangle E B F| \text { by Vertical Angle Them. }
\end{aligned}
$$

$$
\begin{aligned}
& A * B * E, F * B * C \text { 。 } \\
& \text { Then }|\triangle A B F|= \\
& |\forall E B C|=|K F B E|=90^{\circ}
\end{aligned}
$$

Fundamental Existence Property L line in plane $P, B \in P \Rightarrow$ there is a unique line M so $B \in M$ and $L \perp M$.

Two cares $B \in L$ and $B \notin L$
Proof when $B \in L$ Choose one side of $L=B C$
Then there is a unique ray $\left[B A\right.$ no $|\Varangle A B C|=90^{\circ}$ proving existence. Must also show uniqueness. Let $D \in P-L$ so $|2 D B C|=90^{\circ}$ It $D+A$ on same side, then weals have $\left[B D=\left[B A, s 0^{B D=B A}+\right.\right.$ $\triangle D B C=\triangle A B C$. On the o the hand, if $D+A$ on opposite sicker, let Esatisfy $D * B * E$.
Then $E+A$ on fame side, so $[B E=B A+B E=B A=$ BD.
Proof when $B \notin L$ Let $L=A C$.

Consider ray [AE so $E \in$ op B - side $A C$. and $|\times E P C C|=1 x^{2} A C \mid$ Take $D \in(A E$ so $|A B|=|A D|$.
I\& $A B \perp A C$ have a perpendicular. Other wise, proceed of follows:
(BD) meets $A C$ in some $F \neq A)$. There is a common pot. by plane separation. If $F=A$, then $A B=A D=B D$, so $B * A * D$ (op prides)
and $|\angle A B C|=90^{\circ}$. So assume $F \neq A$ henceforth.

Not
Covering all cases is a
common mistake!

