SOLUTIONS FOR WEEK 03 EXERCISES

Assume that $(\mathbf{S} ; \mathcal{P} ; \mathcal{L} ; d ; \alpha)$ or $(\mathbf{P} ; \mathcal{L} ; d ; \alpha)$ is a system which satisfies the Incidence, Ruler, Plane or Space Separation (as appropriate), Angle Measurement and Triangle Congruence Axioms; in other words, the system is a neutral geometry.

1. We know that D cannot be equal to either A or C, because this would imply that either $|\angle B C A|$ or $|\angle C A B|$ would be equal to 90°. Thus one of the three points A, C, D must be between the other two. If we have $A * C * D$, then the Exterior Angle Theorem would imply that $|\angle A C B|>|\angle C D B|=90^{\circ}$, which would contradict our assumption that $|\angle A C B|=|\angle B C A|<90^{\circ}$. Similarly, if we have $D * A * C$, then the Exterior Angle Theorem would imply that $|\angle B A C|>$ $|\angle B D A|=90^{\circ}$, which would contradict our assumption that $|\angle C A B|=|\angle B A C|<90^{\circ}$. The only remaining possibility for the collinear points A, B, D is the betweenness relation $A * D * C$..
2. The first part follows from the preceding exercise because the measures of at least two vertex angles are less than 90° (by the Exterior Angle Theorem).

If all three vertex angles are acute (measure $<90^{\circ}$), then the feet of all three perpendiculars lie on the respective open segments. However, if $\angle A B C$ in $\triangle A B C$ is a right angle, then The feet of the perpendiculars from A and C are the point B, which does not lie on $(A B)$ or $B C$. Likewise, if $\angle A B C$ in $\triangle A B C$ is an obtuse angle (measure $>90^{\circ}$), then the Exterior Angle Theorem implies that the feet Y and Z of the perpendiculars from A and C must satisfy $Y * B * C$ and $A * B * Z$ respectively.

Hee are sketches of an example where all three statements are true and an example where only one statement is true.-

3. (a) Here is a drawing:

Note first that $|\angle D B E|=|\angle D B A|=\frac{1}{2}|\angle A B C|=\frac{1}{2}|\angle D B C|=|\angle D B F|$. Since $|B D|=|B D|$ trivially holds and we are given $|\angle D E B|=|\angle D F B|$, we have $\triangle D E B \cong \triangle D F B$ by AAS, and therefore we also have $|D E|=|D F|$.■
(b) Here is a drawing:

Since the larger angle is opposite the longer side, we have $|\angle C D E|>|\angle C E D|$. Therefore $|\angle B E D|=$ $180-|\angle C E D|>180-|\angle C D E|=|\angle A D E|$.■
4. The points X, Y, Z are not collinear because a line cannot intersect all three open sides of a triangle. Also, the betweenness hypotheses imply

$$
\begin{aligned}
& |A B|=|A X|+|X B|, \\
& |B C|=|B Y|+|Y C|, \text { and } \\
& |A C|=|A Z|+|Z C|
\end{aligned}
$$

Finally, the Triangle Inequality implies that

$$
\begin{aligned}
& |X Y|<|B X|+|B Y|, \\
& |Y Z|<|C Y|+|C Z|, \text { and } \\
& |X Z|<|A X|+|A Z| .
\end{aligned}
$$

If we add these we obtain

$$
|X Y|+|Y Z|+|X Z|<|B X|+|B Y|+|C Y|+|C Z|+|A X|+|A Z|
$$

and using the betweennes identities we see that the right hand side is equal to $|A B|+|B C|+|A C|$; thus we have shown the inequality stated in the exercise.
5. Let X and Y be points of P, and let $L=X Y$. Take M to be the unique perpendicular to L at X. If N is a line through X which is perpendicular to L, by uniqueness we have $N=M$. Therefore there cannot be a line N in P through X which is perpendicular to both L and $M .$.
6. (a) If there is a point $E \in(A C \cap(B D$, then $\angle C A B=\angle E A B$ and $\angle D B A=\angle E B A$, so by the Exterior Angle Theorem we know that

$$
|\angle C A B|+|\angle D B A|=|\angle E A B|+|\angle E B A|<180
$$

which is what we wanted to prove..
(b) In this case the two lines meet at a point E such that $E * A * C$ and $E * B * D$. By the reasoning in (a) we know that $|\angle E A B|+\angle E B A \mid<180$ and by the Supplement Postulate this translates to

$$
\begin{gathered}
|\angle C A B|+|\angle D B A|=(180-|\angle E A B|)+(180-|\angle E B A|)= \\
360-(|\angle E A B|+\angle E B A \mid)>360-180=180
\end{gathered}
$$

which is what we wanted to prove..

