SOLUTIONS FOR WEEK 03 EXERCISES

Assume that $(\mathbf{S}; \mathcal{P}; \mathcal{L}; d; \alpha)$ or $(\mathbf{P}; \mathcal{L}; d; \alpha)$ is a system which satisfies the Incidence, Ruler, Plane or Space Separation (as appropriate), Angle Measurement and Triangle Congruence Axioms; in other words, the system is a **neutral geometry**.

1. We know that D cannot be equal to either A or C, because this would imply that either $|\angle BCA|$ or $|\angle CAB|$ would be equal to 90°. Thus one of the three points A, C, D must be between the other two. If we have A * C * D, then the Exterior Angle Theorem would imply that $|\angle ACB| > |\angle CDB| = 90^{\circ}$, which would contradict our assumption that $|\angle ACB| = |\angle BCA| < 90^{\circ}$. Similarly, if we have D * A * C, then the Exterior Angle Theorem would imply that $|\angle BAC| > |\angle BDA| = 90^{\circ}$, which would contradict our assumption that $|\angle CAB| = |\angle BAC| < 90^{\circ}$. The only remaining possibility for the collinear points A, B, D is the betweenness relation A * D * C.

2. The first part follows from the preceding exercise because the measures of at least two vertex angles are less than 90° (by the Exterior Angle Theorem).

If all three vertex angles are acute (measure $\langle 90^{\circ} \rangle$), then the feet of all three perpendiculars lie on the respective open segments. However, if $\angle ABC$ in $\triangle ABC$ is a right angle, then The feet of the perpendiculars from A and C are the point B, which does not lie on (AB) or BC. Likewise, if $\angle ABC$ in $\triangle ABC$ is an obtuse angle (measure $> 90^{\circ}$), then the Exterior Angle Theorem implies that the feet Y and Z of the perpendiculars from A and C must satisfy Y * B * C and A * B * Zrespectively.

Hee are sketches of an example where all three statements are true and an example where only one statement is true. \blacksquare

3. (a) Here is a drawing:

Note first that $|\angle DBE| = |\angle DBA| = \frac{1}{2}|\angle ABC| = \frac{1}{2}|\angle DBC| = |\angle DBF|$. Since |BD| = |BD| trivially holds and we are given $|\angle DEB| = |\angle DFB|$, we have $\triangle DEB \cong \triangle DFB$ by AAS, and therefore we also have |DE| = |DF|.

(b) Here is a drawing:

Since the larger angle is opposite the longer side, we have $|\angle CDE| > |\angle CED|$. Therefore $|\angle BED| = 180 - |\angle CED| > 180 - |\angle CDE| = |\angle ADE|$.

4. The points X, Y, Z are not collinear because a line cannot intersect all three open sides of a triangle. Also, the betweenness hypotheses imply

$$|AB| = |AX| + |XB|,$$

 $|BC| = |BY| + |YC|,$ and
 $|AC| = |AZ| + |ZC|.$

Finally, the Triangle Inequality implies that

|XY| < |BX| + |BY|,|YZ| < |CY| + |CZ|, and |XZ| < |AX| + |AZ|. If we add these we obtain

 $|XY| \ + \ |YZ| \ + \ |XZ| \ \ < \ \ |BX| \ + \ |BY| \ + \ |CY| \ + \ |CZ| \ + \ |AX| \ + \ |AZ|$

and using the betweennes identities we see that the right hand side is equal to |AB| + |BC| + |AC|; thus we have shown the inequality stated in the exercise.

5. Let X and Y be points of P, and let L = XY. Take M to be the unique perpendicular to L at X. If N is a line through X which is perpendicular to L, by uniqueness we have N = M. Therefore there cannot be a line N in P through X which is perpendicular to both L and M.

6. (a) If there is a point $E \in (AC \cap (BD, \text{then } \angle CAB = \angle EAB \text{ and } \angle DBA = \angle EBA$, so by the Exterior Angle Theorem we know that

$$|\angle CAB| + |\angle DBA| = |\angle EAB| + |\angle EBA| < 180$$

which is what we wanted to prove.

(b) In this case the two lines meet at a point E such that E * A * C and E * B * D. By the reasoning in (a) we know that $|\angle EAB| + \angle EBA| < 180$ and by the Supplement Postulate this translates to

$$|\angle CAB| + |\angle DBA| = (180 - |\angle EAB|) + (180 - |\angle EBA|) =$$

 $360 - (|\angle EAB| + \angle EBA|) > 360 - 180 = 180$

which is what we wanted to prove.

