EXERCISES FOR WEEK 04

For the these exercises assume that $(\mathbf{S} ; \mathcal{P} ; \mathcal{L} ; d ; \alpha)$ or $(\mathbf{P} ; \mathcal{L} ; d ; \alpha)$ is a system which satisfies the axioms for Euclidean geometry.

1. Suppose we are given a parallelogram $\diamond A B C D$, and let $E \in(A B)$ and $F \in(C D)$ be such that $[D E$ bisects $\angle C D A$ and $[B F$ bisects $\angle A B C$. Prove that the lines $D E$ and $B F$ are parallel. [Why are the two lines distinct?]
2. Assume that we are given two angles $\angle D A B$ and $\angle D C B$ in a Euclidean plane such that $|\angle C A B|=|\angle D C B|$, and also assume that we have $X \in(A B) \cap(C D)$. Prove that $|A X| \cdot|X B|=$ $|C X| \cdot|X D|$.
3. (a) Suppose that $\triangle A B C$ satisfies $\triangle A B C \sim \triangle B C A$ (note the orderings of the vertices!). Prove that $\triangle A B C$ is equilateral. [Hints: Why do we also have $\triangle B C A \sim \triangle C A B$ and $\triangle C A B \sim$ $\triangle A B C$? with the same ratio of similitude? If $\triangle A B C \sim \triangle A B C$, why is 1 the only possible ratio of similitude?]
(b) Suppose that $\triangle A B C$ satisfies $\triangle A B C \sim \triangle A C B$ (note the orderings of the vertices!). Prove that $\triangle A B C$ is isosceles, and give an example to show that this triangle need not be equilateral.
4. Given $\triangle A B C$, let D and E denote the midpoints of $[A B]$ and $[A C]$ respectively. Prove that $D E$ is parallel to $A B$ and $|D E|=\frac{1}{2}|B C|$. [Hint: Show that the line through D which is parallel to $B C$ contains E.]
5. Suppose that we are given positive real numbers $a_{1},, a_{n}$ and $b_{1},, b_{n}$ such that

$$
\frac{a_{1}}{b_{1}}=\frac{a_{i}}{b_{i}}
$$

for all i. Prove that

$$
\frac{a_{1}}{b_{1}}=\frac{a_{1}+\ldots+a_{n}}{b_{1}+\ldots+b_{n}}
$$

6. Let $\triangle A B C$ be given, and let Z be a point on $(A B$. Let X and Y be points on the same side of $A B$ as C such that $A X, C Z$ and $B Y$ are all parallel to each other, and also assume that $B * C * X$ and $A * C * Y$. Prove that

$$
\frac{1}{|C Z|}=\frac{1}{|A X|}+\frac{1}{|B Y|}
$$

