Parallel Projection

Li mutually 11 $M+N$ transversals

First observation $A * B * C \Rightarrow A^{\prime} * B^{\prime} * C_{0}^{\prime}$
Proof B his instrip be tween $L_{1}+L_{3}($ sect $1+W)$.

$$
\begin{aligned}
& B \in L_{3} \text {-side } L_{1} \wedge L_{1}-\text { side } L_{3} \text { (def strip) } \\
& \text { Ether } B^{\prime}=B \text { or } B B^{\prime}=L_{2} \text {. Ineitharcare, } \\
& B^{\prime} \in[\text { previous }] \Rightarrow A^{\prime} * B^{\prime}+C^{\prime} \text {. }
\end{aligned}
$$

Prop $1|A B|=|A C| \Rightarrow\left|A^{\prime} B^{\prime}\right|=\left|A^{\prime} C^{\prime}\right|$.
Proof. Caves $A=A^{\prime}, B=B^{\prime}$ or $C=C^{\prime}$

This impleie B,B, D, C vertices of \angle, salad $\triangle A C C^{\prime}=\triangle A C D$ and $\triangle B^{\prime} D C^{\prime}$ are correlp $\& s$.

Also recall $\left|\underline{A^{\prime}} \mathbf{B}^{\prime}\right|=$ $\left|\underline{A C} C^{\prime} C\right| b y$ remarks on
prev. page.

$$
\left|\triangle A C e_{\text {(asa) }}^{\prime}\right|=\left|\triangle A B B^{\prime}\right|=\left|\Delta C^{\prime} B^{\prime} D\right| \text {. Hewce }
$$

$\triangle A B B^{\prime} \cong \triangle B^{\prime} D C^{\prime}$, so that.

$$
\left|A^{\prime} B^{\prime}\right|=\left|B^{\prime} C^{\prime}\right|
$$

$\left|\not \angle A B A^{\prime}\right|=\left|A C B C^{\prime}\right|$ Vertical angles
|x, $A A^{\prime} C\left|=\left|x C C^{\prime} A\right|\right.$ Alternate IntenorAngles.
So $\triangle A B A^{\prime} \cong \triangle C B C^{\prime}$ by $A S A$, and hence

$$
\begin{aligned}
& \left|A^{\prime} B=A^{\prime} B^{\prime}\right|=\left|C^{\prime} B=C^{\prime} B^{\prime}\right| . \\
& \text { Case }\left\{A, B, C^{\prime}\right\}\left\{\begin{array}{l}
\text { wo condition } \\
\text { whether } \\
\left.M_{1}^{\prime} B^{\prime} C^{\prime}\right\}=\phi \text { MorN. }
\end{array}\right.
\end{aligned}
$$

$$
\begin{array}{c|c|c}
A=A^{\prime} \\
B-f B^{\prime \prime} & B^{\prime} \\
c \neq & a^{\prime \prime} & c^{\prime}
\end{array}
$$

Close $N \| M_{2}$ so
the $A \in N$
$\mu_{1} \quad N \mu_{2}$
$N \neq M_{1}$. Otherwise $A \in M 2$, which is not the case

Previous reasoning scours $\left|A B^{\prime \prime}\right|=\left|B^{\prime \prime} C^{\prime \prime}\right|$. But now we have $I_{s} A A^{\prime} B^{\prime \prime} B+B^{\prime \prime} \cdot B^{\prime} C^{\prime \prime} C$, so

$$
\left|A B^{\prime \prime}\right|=\left|A^{\prime} B^{\prime}\right|,\left|B^{\prime \prime} C^{\prime \prime}\right|=\left|B^{\prime} C^{\prime}\right| \text { and }
$$

finally $\left|A^{\prime} B^{\prime}\right|=\left|A B^{\prime \prime}\right|=\left|B^{\prime} C^{\prime \prime}\right|=\left|B^{\prime} C^{\prime}\right|_{0}$
Notebook Paper Theorem L_{i}^{k}, M_{j} as betwally II

$$
A_{i} \in L_{i} \cap M_{1}, \frac{A_{1} * A_{2} * A_{3} \ldots * A_{\text {wo }}}{B_{i} \in L_{i} \cap M_{2}} \text {. Then }
$$

$$
B_{1} * \ldots * B_{m 0} \quad \text { Furthermore, if }\left|A_{i+1} A_{i}\right|=
$$

$\left|A_{2} A_{1}\right|$ for all i, then $\left|B_{i-1} B_{i}\right|=\left|B_{2} B_{1}\right|$ fro all i_{1},

Apply sereced ling
successively to

$$
L_{i-1}, L_{i,} L_{i+1}
$$

Rat incual Proportionality Thu: $L_{1} L_{2} L_{3}$ as butare $A_{i} \in M_{1} \cap L_{i}, B_{r} \in M_{2} \cap L_{i r}$. If $\frac{\left|A_{2} A_{3}\right|}{\left|A_{1} A_{2}\right|}$ is rational, then $\frac{\left|B_{2} B_{3}\right|}{\left|B, B_{2}\right|}=\frac{\left|A_{2} A_{3}\right|}{\left|A_{1} A_{2}\right|}$.

By algebra we also have $\frac{\left|B_{1} B_{2}\right|}{\left|A_{1} A_{2}\right|}=\frac{\left|B_{2} B_{3}\right|}{\left|A_{2} A_{3}\right|}$
Proof Let $\frac{\left|A_{2} A_{3}\right|}{\left|A_{1} A_{2}\right|}=\frac{p}{q}$, so $\frac{\left|A_{2} A_{3}\right|}{p}=\frac{\left|A_{1} A_{3}\right|}{q\}_{A_{1} A_{2}}=}$ w("unit length"). Drain ausciliany parable Li as follows:

$$
\left|X_{i+1} X_{i}\right|=w
$$

all

Previous results show that $\left|Y_{i+1} Y_{R}\right|=v$ all i, so also by ktwecmuss

$$
\left.\begin{array}{l}
\left|A_{1} A_{2}\right|=q w,\left|A_{2} A_{3}\right|=p z u \\
\left|B_{1} B_{2}\right|=q v,\left|B_{2} B_{3}\right|=p r .
\end{array}\right\} \text { 友 } \frac{\left|B_{2} B_{3}\right|}{\left|B_{1} B_{2}\right|}=q
$$

Irrational $\frac{\left|A_{2} A_{3}\right|}{\left|A_{1} A_{2}\right|}$. Need more sophisticated ideas, took Cirechs about 200 years to find a solution.

Condition of Eudoxus $0<x, y \in \mathbb{R}$. Then $x=y \Leftrightarrow$
(a) evening positive rational $\frac{p}{q}<x$ satisfuis $\frac{p}{q}<y$. (b) Same with inequalityalirections reversed. Key idea If $0<x<y$ there is some $\frac{p}{q}$ so $x<\frac{p}{q}<y$. (Look at decimal expansions, for example). See Moist 11.3-11.4 fe details\} ~ - read o understand passively!

Simile an Triangles $\triangle A B C \sim \triangle D E F$ vertices (Similar, with ratio of Sim ilitude $=r$) \Longleftrightarrow $|\angle A B C|=|X D E F|,|\angle B C A|=|\angle D F E|,|\angle C A B|=|\angle F O E|$ and $\quad \frac{|D E|}{|A B|}=\frac{|D F|}{|A C|}=\frac{|E F|}{|B C|}=r\left(\frac{\text { some }}{} \quad r\right)$.
Abstract stuff $\triangle A B C \cong \triangle D E F \Leftrightarrow$

$$
\triangle A B C \tilde{\underline{I}} \triangle D E F
$$

$$
\begin{gathered}
\triangle A B C \sim \triangle A B C, \triangle A B C \sim \triangle D D E F \Rightarrow \triangle D E F \sim \triangle A B C \\
\triangle A B C \sim \triangle D E F+\triangle D E F \sim \sim \\
\sim \\
\sim \\
\sim
\end{gathered} \triangle G H K \Rightarrow \triangle A B C \sim \triangle G H K
$$

AA. Similarity Theorem Given $\triangle A B C+\triangle D E F$ st. $|\measuredangle B A C|=|\forall E D F|,|\angle A B C|=|\triangle D E F|$.
Then $\triangle A B C \sim \triangle D E F$.
Proof, We also have $|\triangle A C D|=|\triangle D E E|$.
Lat $r=\frac{|D E|}{|A B|}$,
Nous suppose $r \leq 1$. Switch ing the rales of the triangles if need, can assume $r \geqslant 1$.

Take $B^{\prime} \in(A B$ so that $\left|A B^{\prime}\right|=r|A B|$. Let bine L through B^{\prime} so that $L \| B C$ Notice $A \times B \times B^{\prime}(r>1)$
CLAIM L t: $^{A C}$ not par allyl; otherwise

LHAC $+L\|B C \Rightarrow B C\| A C$, false since these meet at C. Suppose $L+A C$ meet at C. Then $L \subseteq B^{\prime}$-side $A C+A * B * B^{\prime} \Rightarrow C^{\prime}+A$ on oppsider,
so C, C'onsarne side and $A * C * C$!. Byprer. thor.

$$
\begin{aligned}
& \frac{\left|C C^{\prime}\right|}{|A C|}=\frac{\left|B B^{\prime}\right|}{|A B|}=w-1 \text { so } \frac{\left|A B^{\prime}\right|}{|A B|}=\frac{|A B|+\left|B B^{\prime}\right|}{|A B|} \\
& =\frac{\left|B B^{\prime}\right|}{|A B|}+1 \text {; likewise } \frac{\left|A C^{\prime}\right|}{|A C|}=\frac{\left|C C^{\prime}\right|}{|A C|}+1 \text {. Since } \\
& \frac{\left|C C^{\prime}\right|}{|A C|}=\frac{\left|B B^{\prime}\right|}{|A B| \text {, get }} r=\frac{\left|A B^{\prime}\right|}{|A B|}=\frac{\left|A C^{\prime}\right|}{|A C|}
\end{aligned}
$$

Also $\triangle B A C=\angle B^{\prime} A^{+} C^{\prime},|\angle A B C|=\left|\forall A B^{\prime} C^{\prime}\right|,|\triangle A C B|=$ $\left|\forall A C^{\prime \prime} B^{\prime}\right|$. Combining with hypotheses, get $\left|\angle B^{\prime} A C^{\prime}\right|=|X E D F|,\left|\triangle A B^{\prime} C^{\prime}\right|=|\angle D E F|$, and $|D E|=r|A B|=\left|A B^{\prime}\right|$, so $\triangle A B^{\prime} C^{\prime} \cong \triangle D E F$ by $S A S$. Will suffice to prove $\triangle A B C \sim \triangle D E F$. Have shown $A A A+\frac{\left|A B^{\prime}\right|}{|A B|}=\frac{\left|A C^{\prime}\right|}{|A C|} \cdot$ If we substitute $\begin{aligned} & A \\ & B\end{aligned} \rightarrow B_{C^{*}}^{*}$ equirto
$\frac{|D E|}{\left.|A B|=\frac{|D|}{|A C|} \right\rvert\,} \begin{aligned} & \mathrm{E} \rightarrow E^{\prime} \\ & E\end{aligned}$. Then $\frac{\left|D^{*} F^{*}\right|}{\left|A^{*} C^{*}\right|}=\frac{\left|D^{*} E^{*}\right|}{\left|A^{*} B^{*}\right|}$ or $\frac{|E F|}{|B C|}=\frac{|D F|}{|A C|}$. Hence $\triangle A B C \sim \triangle A B^{\prime} C^{\prime} \cong \triangle D E F$.
Construction yields
Cor. Given $\triangle A B C$ tr $-\geq 1$. Then can find $\triangle A B^{\prime} C^{\prime}$ so $B^{\prime} \in\left(A B, C^{\prime} \in\left(A C, \triangle A B C \sim \triangle A B^{\prime} C^{\prime}\right.\right.$.

