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HIGHER ORDER BETWEENNESS RELATIONSHIPS

In Lecture 07 the notion of betweenness was extended to sets of more than 3 collinear
points. The purpose of this document is to formalize this concept and establish some of its
basic properties, particularly as they are needed to discuss the Notebook PaperTheorem,
proportion and similarity.

Definition. Let A0, · · · , An be a set of distinct collinear points where n ≥ 2. These
points are said to be in the order A0 ∗ · · · ∗ An if and only if for each triple (i, j, k) such
that 0 ≤ i < j < k ≤ n we have the usual betweenness relation Ai ∗Aj ∗Ak.

It is not difficult to see that every set of n+ 1 ≥ 3 points can be placed in some order.

PROPOSITION. Given a set of n + 1 ≥ 3 collinear points A0, · · · , An there is a
reordering (permutation) σ(0), · · · , σ(n) of {0, · · · , n} so that Aσ(0) ∗ · · · ∗Aσ(n) is true.

Proof. Let L be the line containing the points, let fL→ R be a ruler function for L and
let xi = f(Ai). Then there is some reordering (permutation) σ(0), · · · , σ(n) of {0, · · · , n}
so that xσ(0) < · · · < xσ(n) is true. For each for each triple ( (σ(i), σ(j), σ(k) ) such that
0 ≤ σ(i) < σ(j) < σ(k) ≤ n we then have

0 < |xσ(k) − xσ(i)| = |xσ(j) − xσ(i)| + |xσ(k) − xσ(j)|

and therefore Aσ(i) ∗Aσ(j) ∗Aσ(k) is true. By definition, it follows that Aσ(0) ∗ · · · ∗Aσ(n)
is true.

For large values of n we need a criterion for recognizing when A0, · · · , An are in the
order A0 ∗ · · · ∗An:

THEOREM. Let L be a line, and let let A0, · · · , An be a set of distinct points on L,
and let f : L→ R be a ruler function for L such that f(A0) < f(Ai) for some i > 0. Then
the points are in the order A0 ∗ · · · ∗An if and only if f(A0) < f(A1) · · · < f(An).
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Proof. If the chain of inequalities holds, then the points are in order by the argument in
the previous proposition. Conversely, suppose that the points are in the order A0∗ · · · ∗An
and only the single inequality f(A0) < f(Ai) is known. If n = 2 the proof of this converse
is a consequence of the earlier result on recognizing betweenness in terms of ruler functions:
Betweenness implies that either f(A0) < f(A1) < f(A2) or f(A0) > f(A1) > f(A2), and
since we know that either f(A0) < f(A1) or f(A0) < f(A2), the first alternative must be
true.

We can now proceed by finite induction. If Pm is the statement of the proposition
fpr n = m, we know that P2 is true. Assume now that Pn−1 is true for n ≥ 3. The proof
that Pn is true now splits into two cases.

Case 1. f(A0) < f(Ai) where i < n. Since Pn−1 is assumed to be true we have
f(A0) < f(A1) · · · < f(An−1). We know that P2 is also true, and this yields the
inequalities f(An−2) < f(An−1) < f(An). If we combine these inequalities we obtain the
desired string of inequalities f(A0) < · · · < f(An−1) < f(An).

Case 2. f(A0) < f(An). Since P2 is true and A0 ∗ · · · ∗ An implies A0 ∗ An−1 ∗ An we
also have f(A0) < f(An−1) < f(An). Therefore we are again in Case 1 where i = n − 1,
and accordingly we can complete the proof in this case using the argument for that case.

Example. If we are given a ray [AB and a distance d > 0, then we can find points
X1, · · · , Xn ∈ [AB so that |AXk| = k d for 1 ≤ k ≤ n. It follows that we have the
betweenness relation A ∗X1 ∗ · · · ∗Xn.
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