MORE EXERCISES FOR WEEK 04

For the these exercises assume that $(\mathbf{S}; \mathcal{P}; \mathcal{L}; d; \alpha)$ or $(\mathbf{P}; \mathcal{L}; d; \alpha)$ is a system which satisfies the axioms for Euclidean geometry.

7. (a) Suppose that we are given real numbers a, b > 0. Prove that there is a right triangle $\triangle ABC$ with |BC| = a, |AC| = b and $|\angle ACB| = 90^{\circ}$.

(b) Using (a) and the Hinge Theorem (see Moise, p. 121), prove that in a triangle $\triangle ABC$ we have $|\angle ACB| < 90^{\circ}$ when $|AB|^2 < |AC|^2 + |BC|^2$ and $|\angle ACB| > 90^{\circ}$ when $|AB|^2 > |AC|^2 + |BC|^2$.

8. Suppose we are given isosceles triangle $\triangle ABC$ with |AB| = |AC| = x and |BC| = y. Let $D \in (AC)$ be such that |BD| bisects $\angle ABC$, and let z = |CD|. Solve for z in terms of x and y.

9. Suppose we are given $\triangle ABC$, and let $D \in (AB)$ be such that $|\angle DCA| = |\angle ABC|$. Prove that |AC| is the mean proportional between |AB| and |AD|.

10. Suppose that we are given $\triangle ABC \sim \triangle DEF$, and let G and H be the midpoints of [BC] and [EF] respectively. Prove that $\triangle ABG \sim \triangle DEH$.

11. Suppose that $\triangle ABC \sim \triangle DEF$ and $\triangle ABC$ is isosceles. Show that $\triangle DEF$ is also isosceles.

12. Justify the assertion about planar coordinate systems: If A, B, C are noncollinear points in the plane, then there is a coordinate system such that A corresponds to (0,0), B corresponds to (u,0) for some u > 0, and C corresponds to (x, y) where y > 0.