MORE EXERCISES FOR WEEK 04

For the these exercises assume that $(\mathbf{S} ; \mathcal{P} ; \mathcal{L} ; d ; \alpha)$ or $(\mathbf{P} ; \mathcal{L} ; d ; \alpha)$ is a system which satisfies the axioms for Euclidean geometry.
7. (a) Suppose that we are given real numbers $a, b>0$. Prove that there is a right triangle $\triangle A B C$ with $|B C|=a,|A C|=b$ and $|\angle A C B|=90^{\circ}$.
(b) Using (a) and the Hinge Theorem (see Moise, p. 121), prove that in a triangle $\triangle A B C$ we have $|\angle A C B|<90^{\circ}$ when $|A B|^{2}<|A C|^{2}+|B C|^{2}$ and $|\angle A C B|>90^{\circ}$ when $|A B|^{2}>|A C|^{2}+|B C|^{2}$.
8. Suppose we are given isosceles triangle $\triangle A B C$ with $|A B|=|A C|=x$ and $|B C|=y$. Let $D \in(A C)$ be such that $[B D$ bisects $\angle A B C$, and let $z=|C D|$. Solve for z in terms of x and y.
9. Suppose we are given $\triangle A B C$, and let $D \in(A B)$ be such that $|\angle D C A|=|\angle A B C|$. Prove that $|A C|$ is the mean proportional between $|A B|$ and $|A D|$.
10. Suppose that we are given $\triangle A B C \sim \triangle D E F$, and let G and H be the midpoints of $[B C]$ and $[E F]$ respectively. Prove that $\triangle A B G \sim \triangle D E H$.
11. Suppose that $\triangle A B C \sim \triangle D E F$ and $\triangle A B C$ is isosceles. Show that $\triangle D E F$ is also isosceles.
12. Justify the assertion about planar coordinate systems: If A, B, C are noncollinear points in the plane, then there is a coordinate system such that A corresponds to $(0,0), B$ corresponds to $(u, 0)$ for some $u>0$, and C corresponds to (x, y) where $y>0$.

