SOLUTIONS FOR WEEK 04 EXERCISES

Assume that $(\mathbf{S} ; \mathcal{P} ; \mathcal{L} ; d ; \alpha)$ or $(\mathbf{P} ; \mathcal{L} ; d ; \alpha)$ is a system which satisfies the axioms for Euclidean geometry.

1. Here is a drawing of a typical case:

We shall first answer the question in the hint and show that $D E \neq B F$. If these lines were equal then both would be the diagonal line $D B$. Since this line meets each of $A B$ and $C D$ in at most one point, we would then have $E=A$ and $F=C$. This contadicts our assumptions that E and F lie on the closed segments $(A B)$ and $(C D)$, so we can conclude that $D E \neq B F$.

One step in proof of the basic measurement identities for parallelograms is proving that $\triangle A D B \cong \triangle C B D$ and $\triangle A D C \cong \triangle C B A$. This yields the identity

$$
|\angle A D B|=|\angle D B C| .
$$

The betweenness conditions $A * E * B$ and $C * F * D$ imply that E and F lie in the interiors of $\angle A D B$ and $\angle C B D$ respectively, so the additivity of angle measures imply that

$$
|\angle A D E|+|\angle E D B|=|\angle A D B|=|\angle C B D|=|\angle B D F|+|\angle F B C| .
$$

By construction and the first display in this argument we also have

$$
|\angle A D E|=\frac{1}{2}|\angle A D B|=\frac{1}{2}|\angle D B C|=|\angle F B C|
$$

and if we subtract this equation from the previous one we have $|\angle E D B|=|\angle F B D|$.
The drawing suggest that the two angles in the preceding sentence are alternate interior angles, and the next step is to verify this. Since the diagonals of a parallelogram have a point in common, we know that A and C lie on opposite sides of $B D$, and the betweenness conditions $A * E * B$ and $C * F * D$ imply that E and F lie on the same sides of $B D$ as A and C respectively. Therefore E and F lie on opposite sides of $B D$, so that $\angle E D B$ and $\angle F B D$ are alternate interior angles. The latter implies that $D E$ and $B F$ are parallel lines.■
2. Here is a sketch:

By the Vertical Angle Theorem we know that $|\angle A X D|=|\angle C X B|$, and hence by the AA Similarity Theorem we have $\triangle A X D \sim \triangle C X B$. The latter yields the proportionality equation

$$
\frac{|A X|}{|C X|}=\frac{|B X|}{|D X|}
$$

and if we clear this of fractions we find that $|A X| \cdot|X B|=|C X| \cdot|X D| \cdot$
3. (a) Since $\triangle A B C \sim \triangle B C A$, let the ratio of similitude be r. If we permute the vertices on both sides cyclically and consistently, we see that $\triangle B C A \sim \triangle C A B$. Furthermore, if r^{\prime} is the ratio of similitude for the second similarity then the two similarities yield

$$
\frac{|A B|}{|B C|}=r \quad \text { and } \quad \frac{|A B|}{|A C|}=r^{\prime}
$$

and consequently $r=r^{\prime}$. Likewise, the same cyclic permuation now yields $\triangle C A B \sim \triangle A B C$ with ratio of similitude r. By the transitivity of similarity we have $\triangle A B C \sim \triangle A B C$ with ratio of similitude r^{3}.

The preceding sentence yields $|A B|=r^{3} \cdot|A B|$, and since $r>0$ it follows that $r=1$. If we substitute this back into the original similarity we find that

$$
\frac{|A B|}{|B C|}=1 \quad \text { and } \quad \frac{|B C|}{|A C|}=1
$$

and therefore $\triangle A B C$ is equilateral.
(b) Since $\triangle A B C \sim \triangle A C B$, let the ratio of similitude be r. Then we also have $\triangle A B C \sim$ $\triangle A C B$ with ratio of similitude equal to $1 / r$, and as in the preceding argument it follows that $r=1 / r$. The only solution to this equation over the positive reals is $r=1$, and therefore we have $\triangle A B C \cong \triangle A C B$, so that the triangle isosceles with $|A B|=|A C|$.■

Note, In the second part the triangle need not be equilateral; one easy example is a 45-45-90 isosceles right triangle.
4. Let L and M be lines through A and D which are parallel to $B C$. By Pasch's Theorem we know that M must contain a point F of $[B C]$ or $[A C]$, and by construction this point cannot lie on either L or $B C$. Therefore the intersection point F must lie on $(A C)$. By the Notebook Paper Theorem we know that $|A F|=|F C|$, and $A * F * C$ implies that $|A C|=2|A F|$; this means that F must be the midpoint and hence $F=E$. Therefore we know that $D E=M$ and hence $D E$ is parallel to $B C$. By the SAS similarity theorem we also have $\triangle A D E \sim \triangle A B C$ with ratio of similitude $\frac{1}{2}$. Since $|A D|=\frac{1}{2}|A B|$, we must also have $|D E|=\frac{1}{2}|B C|$.■
5. Suppose that r is the common ratio, so that $a_{i}=r b_{i}$ for all i. Adding these up, we find that $a_{1}+\ldots+a_{n}=r\left(b_{1}+\ldots+b_{n}\right)$ and hence

$$
\frac{a_{1}}{b_{1}}=r=\frac{a_{1}+\ldots+a_{n}}{b_{1}+\ldots+b_{n}}
$$

6. Here is a sketch:

To simplify the algebraic expressions let $a=|A X|, b=|B Y|, c=|C Z|, u=|A Z|$ and $v=|Z B|$. Since $A * Z * B$ holds, it follows that $|A B|=u+v$.

Since $C Z$ is parallel to $A X$, we have $\triangle B C Z \sim \triangle B A X$, so that

$$
\frac{c}{v}=\frac{b}{u+v}
$$

and likewise since $C Z$ is parallel to $B Y$, we have $\triangle A C Z \sim \triangle A B Y$, so that

$$
\frac{c}{u}=\frac{a}{u+v}
$$

Since $p / q=r / s$ if and only if $p / r=a / x$, the preceding proportions imply

$$
\frac{c}{a}=\frac{u}{u+v}, \quad \frac{c}{b}=\frac{v}{u+v}
$$

and if we add these equations we obtain

$$
c \cdot\left(\frac{1}{a}+\frac{1}{b}\right)=\frac{u+v}{u+v}=1
$$

and if we divide both sides of this equation by c we obtain

$$
\frac{1}{a}+\frac{1}{b}=\frac{1}{c}
$$

which is equivalent to the equation in the conclusion of the exercise.-
Note. This picture is closely related to the derivation of the thin lens formula in elementary physics. An interactive derivation of this formula is given at the following online site:
http://www.hirophysics.com/Anime/thinlenseq.html

