MORE SOLUTIONS FOR WEEK 04 EXERCISES

For the these exercises assume that $(\mathbf{S} ; \mathcal{P} ; \mathcal{L} ; d ; \alpha)$ or $(\mathbf{P} ; \mathcal{L} ; d ; \alpha)$ is a system which satisfies the axioms for Euclidean geometry.
7. (a) Let L and M be perpendicular lines, and let $L \cap M=\{C\}$. Then there are two points $A, A^{\prime} \in L$ so that $|A C|=\left|A^{\prime} C\right|=b$, and there are also two points $B, B^{\prime} \in M$ so that $|B C|=\left|B^{\prime} C\right|=a$. Then $\triangle A B C$ satisfies $|B C|=a,|A C|=b$ and $|\angle A C B|=90^{\circ}$. This result is pretty straightforward, but it is needed for (b).■
(b) The Hinge Theorem states that if $\triangle A B C$ and $\triangle D E F$ satisfy $|A C|=|D F|$ and $|B C|=$ $|E F|$, then $|\angle A C B|<|\angle D F E|$ if and only if $|A B|<|D E|$. We may switch the roles of the two triangles to obtain the following companion result: If $\triangle A B C$ and $\triangle D E F$ satisfy $|A C|=|D F|$ and $|B C|=|E F|$, then $|\angle A C B|>|\angle D F E|$ if and only if $|A B|>|D E|$.

By (a) we know that there is a right triangle $\triangle D E F$ such that $|A C|=|D F|,|B C|=|E F|$ and $|\angle D F E|=90^{\circ}$. Therefore $|D E|^{2}=|D F|^{2}+|E F|^{2}=|A C|^{2}+|B C|^{2}$ by the Pythagorean Theorem and the construction of $\triangle D E F$. Since two positive real numbers u and v satisfy $u<v$ if and only if $u^{2}<v^{2}$, it follows that $|\angle A C B|<|\angle D F E|=90^{\circ}$ if and only if $|A B|^{2}<|A C|^{2}+|B C|^{2}$ and $|\angle A C B|>90^{\circ}|\angle D F E|=90^{\circ}$ if and only if $|A B|^{2}>|A C|^{2}+|B C|^{2} .$.
8. Here is a drawing:

Since [$B D$ bisects $\angle A B C$, the angle bisector theorem implies that

$$
\frac{|B C|}{|A B|}=\frac{|C D|}{|A D|}
$$

and since $A * D * C$ holds by assumption we have $|A D|=|A C|-|C D|=x-z$, so that the ratio equation becomes

$$
\frac{y}{x}=\frac{z}{x-z}
$$

If we clear fractions in this equation we obtain $y x-y z=z x$, and if we solve this for z we obtain

$$
z=\frac{x y}{x+y}
$$

9. Here is a drawing:

The hypothesis on angle measures and $|\angle D A C|=|\angle C A B|$ imply that $\triangle D A C \sim \triangle C A B$ by the $A A$ Similarity Theorem. This in turn implies that

$$
\frac{|A B|}{|A C|}=\frac{|A C|}{|A D|}
$$

and if we multiply by both denominators we find that $|A C|^{2}=|A B| \cdot|A D|$, which is what we wanted to prove.
10. Here is a drawing:

Let r be the ratio of similitude, so that

$$
\frac{|D E|}{|A B|}=\frac{|E F|}{|B C|}=\frac{|D F|)}{|A C|}=r
$$

and note that $\angle G B A=\angle C B A$ and $\angle H E D=\angle F E D$, so that $|\angle A B G|=|\angle D E H|$. Since G and H are midpoints of $[B C]$ and $[E F]$, we have $|B G|=\frac{1}{2}|B C|$ and $|E H|=\frac{1}{2}|E F|$, so that

$$
\frac{|E H|}{|B G|}=\frac{|E F|}{|B C|}=r .
$$

Combining these, we can apply the SAS similarity theorem to conclude that $\triangle A B G \sim \triangle D E H$ with ratio of similitude r.-
11. We know that $\triangle A B C$ is isosceles, and by permuting the vertices if necessary we may assume that $|A B|=|A C|$ and $\triangle A B C \sim \triangle D E F$. Therefore we have

$$
\frac{|A B|}{|D E|}=\frac{|A C|}{|D F|} \quad \text { and thus also } \quad \frac{|A B|}{|A C|}=\frac{|D E|}{|D F|}
$$

Since $\triangle A B C$ is isosceles the left hand side of this equation is equal to 1 , which means that $|D E|=$ $|D F|$ and hence $\triangle D E F$ is also isosceles.-
12. By the main result on setting up coordinates, we can construct a coordinate system for an arbitrary pair of perpendicular lines L and M and ruler functions $f: L \rightarrow \mathbb{R}$ and $g: M \rightarrow \mathbb{R}$; in this construction the common point of L and M corresponds to (0,0). Starting with noncollinear points A, B, C in the given plane, take $L=A B$ and M to be the perpendicular to L at A, and let $f_{0}: L \rightarrow \mathbb{R}$ and $g_{0}: M \rightarrow \mathbb{R}$ be ruler functions for L and M respectively such that $f_{0}(A)=0=g_{0}(A)$.

If D is the foot of the perpendicular L^{\prime} to M through C, we claim that $D \notin L$. First note that $C \in L^{\prime}$ but $C \notin L$ by construction. Now $L \neq L^{\prime}$, and since both are perpendicular to M it follows that L^{\prime} is parallel to L hence $D \notin L$, so that $D \neq A$. Therefore $D \notin L$ as claimed. Multiplying each of f_{0} and g_{0} by -1 if necessary, we obtain ruler functions f and g such that $f(B)>0$ and $g(C)=g(D)>0$. It follows that A corresponds to $(0,0), B$ corresponds to $(u, 0)$ for some $u>0$, and C corresponds to (x, y) where $y>0$.

