EXERCISES FOR WEEK 05

For the these exercises assume that $(\mathbf{S} ; \mathcal{P} ; \mathcal{L} ; d ; \alpha)$ or $(\mathbf{P} ; \mathcal{L} ; d ; \alpha)$ is a system which satisfies the axioms for Euclidean geometry. Background material on circles is given in Chapter 16 of Moise.

1. Prove Theorems 4, 6 and 7 on page 227 of Moise.
2. Let Γ be a circle with radius r, and let A and B be points on the circle. Prove that a point $X \in A B$ lies in the interior of the circle if $A * X * B$, and X lies in the exterior of the circle if either $X * A * B$ or $A * B * X$. [Hints: If the center Q of Γ does not lie on $A B$, consider $\triangle Q A B$, and look at the implications of (i) the Exterior Angle Theorem, (ii) the theorem stating that the longer of two edges of a triangle is opposite the larger angle.]
3. Suppose that we are given four points A, B, C, D on a circle Γ, whose center is Q, such $A D$ and $B C$ meet at Q. Prove that the lines $A B$ and $C D$ are parallel. [Hint: Note that Q is the common midpoint of $[A C]$ and $[B D]$ and look for pairs of alternate interior angles.]
4. Use coordinates to prove the following two statements:
(a) Three distinct points on a circle cannot be collinear.
(b) Two distinct circles have at most two points in common.
5. Let Γ be a circle in the plane, let A be a point in the interior of Γ and let X be a point different from A. Prove that the ray $[A X$ meets Γ in exactly one point. [Hint: By the line-circle theorem, the line $A X$ meets Γ in two points B and C. Why do these points lie on opposite rays?]
