Clarification for page 2 of lecture11.pdf

In the argument showing tha the lines $A D, B E$ and $C F$ have a point in common, the last two lines might note be sufficiently transparent, so here are the details. In the first part of the proof we showed that the point G where $A D$ meets $C F$ can be written in vector form as $\frac{1}{3}(\beta+\gamma)$ because we are assuming $\alpha=0$. To complete the proof we need to show that the lines $B E$ and $C F$ also meet at this point. To find the point H where these two lines meet, we need to find r and s such that the following vector equation is satisfied:

$$
H=\beta+r \cdot\left(\frac{1}{2}(\alpha+\gamma)-\beta\right)=\gamma+s \cdot\left(\frac{1}{2}(\alpha+\beta)-\gamma\right)
$$

Simplifying this (and recalling that $\alpha=0$) we obtain the following:

$$
=(1-r) \beta+\frac{r}{2} \gamma=(1-s) \gamma+\frac{s}{2} \beta
$$

Equating the coefficients of β and γ in these expressions, we obtain $\frac{1}{2} r=1-s$ and $\frac{1}{2} s=1-r$. The unique solution for this system is $r=s=\frac{1}{3}$ and therefore $H=\frac{1}{3}(\beta+\gamma)=G$, so that the three lines all go through the point $\frac{1}{3}(\beta+\gamma) . ■$

