
Math 133
Fall 2021

SOLUTIONS FOR WEEK 05 EXERCISES

Assume that (S;P;L; d;α) or (P;L; d;α) is a system which satisfies the axioms for Euclidean
geometry.

1. Let Γ be a circle with center Q. We shall prove the theorems in order.

Theorem 4. If AB is a chord in Γ and C 6= Q is the midpoint of [AB], then QC ⊥ AB.
— This follows because both Q and C are equidistant from A and B, so that they lie on the
perpendicular bisector of [AB]. Since Q 6= C this means that QC ⊥ AB. (We have added the
condition Q 6= C because the result is either trivial or not meaningful if Q = C.)

Theorems 6 – 7. If [AB] and [CD] are chords of Γ which are equidistant from the
center, then |AB| = |CD|. Conversely, if |AB| = |CD| then [AB] and [CD] are chords which are
equidistant from the center of Γ. — As in the proof of Theorem 4, one must distinguish the cases
when Q lies on the center of a chord and when it does not. The following observation implies that
either both chords are diameters or neither chord is a diameter.

LEMMA. In a circle of radius r, the length of a chord in the circle is 2r if and only if the chord
is a diameter, and the length of the chord is strictly less than 2r if the chord is not a diameter.

Proof of Lemma. If a chord is a diameter, then the center of the circle is its midpoint, and
it follows thaat the length of the chord must be 2r. Assume now that the chord [AB] is not a
diameter. Let C be the chord’s midpoint. We know that QC ⊥ AB by Theorem 4, and therefore
we have a right triangle 4QAC whose hypotenuse is QA. In a right triangle the hypotenuse is the
longest side (either the Pythagorean Theorem or the result on larger angles versus longer sides),
and therefore r = |QA| > |QC|. Therefore we must have |AB| = 2|AC| < 2|QA| = 2r.

Back to the proofs of the theorems. The distance from Q to the chord is zero if and only if the
chord |AB| is a diameter, and we have shown that the latter is equivalent to |AB| = 2r. Therefore
the distance is zero if and only if the chord length is 2r. It remains to consider the case where
neither chord is a diameter, so their distances from Q are positive and their lengths are strictly less
than 2r.

Let E and F denote the midpoints of [AB] and [CD] respectively, and assume first that the
chords are equidistant from the center Q and this distance is positive. Then the hypotenuse-side
congruence theorem for right triangles implies 4QEA ∼= 4QFC, so that |AE| = |CF |. This yields
the identities

|AB| = 2 |AE| = 2 |CF | = |CD|

and hence the chords have equal length.

Conversely, assume the chords have equal length less than 2r, and let E and F be as in the
preceding paragraph. Then we have |AE| = 1

2 |AC| = 1
2 |BD| = |BF |, so in this case we also

have 4QEA ∼= 4QFC by the hypotenuse-side congruence theorem for right triangles. Therefore
|QE| = |QF |, which is what we wanted to prove.
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2. As in the previous exercise, one must distinguish the cases when Q lies on the center of a
chord and when it does not.

Assume first that Q ∈ AB, and choose a ruler function f such that f(Q) = 0. If r > 0 is the
radius of Γ, then f(A) = r and f(B) = −r or vice versa. It follows that a point X ∈ AB lies in the
interior of Γ if |f(X)| < r and X lies in the exterior of Γ if |f(X)| > r. The first case is equivalent
to the betweenness relation A ∗C ∗B and the second case is equivalent to A ∗B ∗C or C ∗A ∗B.

Assume now that Q 6∈ AB, so that it is meaningful to discuss 4QAB. If A ∗ C ∗ B, then
|6 QAB| = |6 QBA| < | 6 QCA| by the Exterior Angle Theorem, and therefore |QC| < |QA| = r
because the larger of two angles in a triangle is opposite the longer side. If A ∗ B ∗ C, then
|6 QAB| = |6 QBA| < | 6 QCA| by the Exterior Angle Theorem, and therefore |QC| > |QA| = r
because the larger of two angles in a triangle is opposite the longer side. If B ∗A ∗C and we switch
the roles of A and B in the preceding argument, we see that |QC| > |QB| = r.

3. The betweenness conditions in the problem imply that A and D lie on opposite sides of BC,
and | 6 AXB| = | 6 DXC| by the Vertical Angle Theorem. Therefore we also have4AXB ∼= 4DXC,
so that |6 XAB = 6 DAB| = |6 XDC = 6 ADC|. If we view BC as a transveral to the lines AB
and CD, this means that we have a pair of alternate interior angles satisfying |6 DAC| = |6 ADC|,
and by the neutral half of the theorem on transversals we know that AB is parallel to CD.

4. (a) Choose a coordinate system such that the line is the x-axis and the circle is defined by
the equation x2 + (y − h)2 = r2 where r is the radius and h > 0; these mean that the center of
the circle is (0, h). If the intersection of the circle with the line is at least two points we must hae
r > h.

Assume now that the circle and the line meet at points (a, 0), (b, 0) and (c, 0). Then we have
a2 + h2 = b2 + h2 = c2 + h2 = r2, so that

a2 = b2 = c2 = r2 − h2

so that each of a, b, c is equal to ±
√
r2 − h2. Since there are only two possible solutions for a, b, c

it follows that at least two of these numbers must be equal, and hence there can only be two points
which lie on both the line and the circle.

(b) Choose coordinates so that the centers of the circles are (0, 0) and (a, 0), so the common
points satisfy the equations x2 + y2 = p2 and (x − a)2 + y2 = q2. If we subtact the first equation
from the second we obtain the linear equation 2ax+ a2 = q2 − p2 which yields

x =
q2 − p2 − a2

2a
.

The corresponding values of y can be retrieved from the formula y = ±
√
p2 − x2. Hence there are

at most two solutions to the system of equations, so that there are also at most two points where
the circles intersect.
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5. By the Line-Circle Theorem, the line AX meets the circle Γ in two points, say B and C, and
Exercise 2 implies that B ∗A ∗C is true. This line is a union of the rays [AB and [AC, and one of
the following must be true:

(1) Both B ∈ [AX and C 6∈ [AX.

(2) Both B 6∈ [AX and C ∈ [AX.

In each case exactly one of the points {B,C} lies in [AX ∩ Γ; since no other points lie in AX ∩ Γ,
it follows that [AX ∩ Γ consists of a single point.
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