## SOLUTIONS FOR WEEK 05 EXERCISES

Assume that $(\mathbf{S} ; \mathcal{P} ; \mathcal{L} ; d ; \alpha)$ or $(\mathbf{P} ; \mathcal{L} ; d ; \alpha)$ is a system which satisfies the axioms for Euclidean geometry.

1. Let $\Gamma$ be a circle with center $Q$. We shall prove the theorems in order.

Theorem 4. If $A B$ is a chord in $\Gamma$ and $C \neq Q$ is the midpoint of $[A B]$, then $Q C \perp A B$. - This follows because both $Q$ and $C$ are equidistant from $A$ and $B$, so that they lie on the perpendicular bisector of $[A B]$. Since $Q \neq C$ this means that $Q C \perp A B$. (We have added the condition $Q \neq C$ because the result is either trivial or not meaningful if $Q=C$.).

Theorems 6-7. If $[A B]$ and $[C D]$ are chords of $\Gamma$ which are equidistant from the center, then $|A B|=|C D|$. Conversely, if $|A B|=|C D|$ then $[A B]$ and $[C D]$ are chords which are equidistant from the center of $\Gamma$. - As in the proof of Theorem 4, one must distinguish the cases when $Q$ lies on the center of a chord and when it does not. The following observation implies that either both chords are diameters or neither chord is a diameter.

LEMMA. In a circle of radius $r$, the length of a chord in the circle is $2 r$ if and only if the chord is a diameter, and the length of the chord is strictly less than $2 r$ if the chord is not a diameter.

Proof of Lemma. If a chord is a diameter, then the center of the circle is its midpoint, and it follows thaat the length of the chord must be $2 r$. Assume now that the chord $[A B]$ is not a diameter. Let $C$ be the chord's midpoint. We know that $Q C \perp A B$ by Theorem 4, and therefore we have a right triangle $\triangle Q A C$ whose hypotenuse is $Q A$. In a right triangle the hypotenuse is the longest side (either the Pythagorean Theorem or the result on larger angles versus longer sides), and therefore $r=|Q A|>|Q C|$. Therefore we must have $|A B|=2|A C|<2|Q A|=2 r$.

Back to the proofs of the theorems. The distance from $Q$ to the chord is zero if and only if the chord $|A B|$ is a diameter, and we have shown that the latter is equivalent to $|A B|=2 r$. Therefore the distance is zero if and only if the chord length is $2 r$. It remains to consider the case where neither chord is a diameter, so their distances from $Q$ are positive and their lengths are strictly less than $2 r$.

Let $E$ and $F$ denote the midpoints of $[A B]$ and $[C D]$ respectively, and assume first that the chords are equidistant from the center $Q$ and this distance is positive. Then the hypotenuse-side congruence theorem for right triangles implies $\triangle Q E A \cong \triangle Q F C$, so that $|A E|=|C F|$. This yields the identities

$$
|A B|=2|A E|=2|C F|=|C D|
$$

and hence the chords have equal length.
Conversely, assume the chords have equal length less than $2 r$, and let $E$ and $F$ be as in the preceding paragraph. Then we have $|A E|=\frac{1}{2}|A C|=\frac{1}{2}|B D|=|B F|$, so in this case we also have $\triangle Q E A \cong \triangle Q F C$ by the hypotenuse-side congruence theorem for right triangles. Therefore $|Q E|=|Q F|$, which is what we wanted to prove.■
2. As in the previous exercise, one must distinguish the cases when $Q$ lies on the center of a chord and when it does not.

Assume first that $Q \in A B$, and choose a ruler function $f$ such that $f(Q)=0$. If $r>0$ is the radius of $\Gamma$, then $f(A)=r$ and $f(B)=-r$ or vice versa. It follows that a point $X \in A B$ lies in the interior of $\Gamma$ if $|f(X)|<r$ and $X$ lies in the exterior of $\Gamma$ if $|f(X)|>r$. The first case is equivalent to the betweenness relation $A * C * B$ and the second case is equivalent to $A * B * C$ or $C * A * B$.

Assume now that $Q \notin A B$, so that it is meaningful to discuss $\triangle Q A B$. If $A * C * B$, then $|\angle Q A B|=|\angle Q B A|<|\angle Q C A|$ by the Exterior Angle Theorem, and therefore $|Q C|<|Q A|=r$ because the larger of two angles in a triangle is opposite the longer side. If $A * B * C$, then $|\angle Q A B|=|\angle Q B A|<|\angle Q C A|$ by the Exterior Angle Theorem, and therefore $|Q C|>|Q A|=r$ because the larger of two angles in a triangle is opposite the longer side. If $B * A * C$ and we switch the roles of $A$ and $B$ in the preceding argument, we see that $|Q C|>|Q B|=r . \square$
3. The betweenness conditions in the problem imply that $A$ and $D$ lie on opposite sides of $B C$, and $|\angle A X B|=|\angle D X C|$ by the Vertical Angle Theorem. Therefore we also have $\triangle A X B \cong \triangle D X C$, so that $|\angle X A B=\angle D A B|=|\angle X D C=\angle A D C|$. If we view $B C$ as a transveral to the lines $A B$ and $C D$, this means that we have a pair of alternate interior angles satisfying $|\angle D A C|=|\angle A D C|$, and by the neutral half of the theorem on transversals we know that $A B$ is parallel to $C D . \square$
4. (a) Choose a coordinate system such that the line is the $x$-axis and the circle is defined by the equation $x^{2}+(y-h)^{2}=r^{2}$ where $r$ is the radius and $h>0$; these mean that the center of the circle is $(0, h)$. If the intersection of the circle with the line is at least two points we must hae $r>h$.

Assume now that the circle and the line meet at points $(a, 0),(b, 0)$ and $(c, 0)$. Then we have $a^{2}+h^{2}=b^{2}+h^{2}=c^{2}+h^{2}=r^{2}$, so that

$$
a^{2}=b^{2}=c^{2}=r^{2}-h^{2}
$$

so that each of $a, b, c$ is equal to $\pm \sqrt{r^{2}-h^{2}}$. Since there are only two possible solutions for $a, b, c$ it follows that at least two of these numbers must be equal, and hence there can only be two points which lie on both the line and the circle.■
(b) Choose coordinates so that the centers of the circles are $(0,0)$ and $(a, 0)$, so the common points satisfy the equations $x^{2}+y^{2}=p^{2}$ and $(x-a)^{2}+y^{2}=q^{2}$. If we subtact the first equation from the second we obtain the linear equation $2 a x+a^{2}=q^{2}-p^{2}$ which yields

$$
x=\frac{q^{2}-p^{2}-a^{2}}{2 a}
$$

The corresponding values of $y$ can be retrieved from the formula $y= \pm \sqrt{p^{2}-x^{2}}$. Hence there are at most two solutions to the system of equations, so that there are also at most two points where the circles intersect.-
5. By the Line-Circle Theorem, the line $A X$ meets the circle $\Gamma$ in two points, say $B$ and $C$, and Exercise 2 implies that $B * A * C$ is true. This line is a union of the rays $[A B$ and $[A C$, and one of the following must be true:
(1) Both $B \in[A X$ and $C \notin[A X$.
(2) Both $B \notin[A X$ and $C \in[A X$.

In each case exactly one of the points $\{B, C\}$ lies in $[A X \cap \Gamma$; since no other points lie in $A X \cap \Gamma$, it follows that $[A X \cap \Gamma$ consists of a single point.■

