EXERCISES FOR WEEK 7

For these exercises assume that the coordinate plane satisfies the axioms for Euclidean plane geometry, with distances and lines as described in Chapter 17 of Moise.

1. Construct a finite incidence planein which one line has three points and the remaining lines each have two points. Explain why this implies that neither the statement
for each pair of lines L and M, there is a 1-1 correspondence between the points of L and the points of M
nor its negation is a consequence of the axioms for an incidence plane.
2. The axioms for an algebraic system called a commutative ring, which consists of a nonempty set together with notions of addition and multiplication, are given as follows:
(Commutative law of addition) $a+b=b+a$ for all a and b.
(Associative law of addition) $\quad a+(b+c)=(a+b)+c$ for all a, b, c.
(Zero element) There is an element 0 in the system such that $a+0=a$ for all a.
(Existence of negatives) For each a there is an element a^{*} in the system such that $a+a^{*}=0$.
(Commutative law of multiplication) $\quad a b=b a$ for all a and b.
(Associative law of addition) $\quad a(b c)=(a b) c$ for all a, b, c.
(Distributive law) $a(b+c)=a b+a c$ for all a, b, c.
Prove that the distributive law is not a consequence of the preceding axioms. [Hint: Define a new pair of operations on the integers, rationals or real numbers with the usual notion of addition and a new multiplication of the form $a^{\circ} b=a+b+a b$.]
