Rigid motion
Original idea to prove SAS, ASA, SSS
gAS

Move $\triangle D E F$ so \&F DE sits over $\& C A B$ Notice D goes to A t E goes to $B t F$ to C since rigid motiuse preserve angle measures and distances.

To be logically rigorous, need a concept of motion, but none fromatlysin Greek geom.

Fortunately, can use linear algebra to justify this. Motion $=$ Function P p
Theorem from Math 122
$T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \quad \cdots \quad 1-1$ into, distance pres. $d(v, w)=d\left(T_{v}, T_{w}\right)$. Thew there are real numbers a, b, c, d so that $a^{2}+b^{2}=1$ and

$$
\begin{aligned}
& T\binom{x}{y}=\left(\begin{array}{cc}
a & \mp b \\
b \pm a
\end{array}\right)\binom{x}{y}+\binom{c}{d}= \\
& \binom{a x \mp b y+c}{b x \pm a y+d}
\end{aligned}
$$

Special cises. $c=d=0$ Aniear\{ $\left\{\begin{array}{l}\text { mapping } \\ \text { trayfornation }\end{array}\right.$

$$
\operatorname{det}=+1 \text { rotation throwgh }\binom{\cos \theta}{\sin \theta}=\binom{a}{b}
$$

$\operatorname{det}=-1$

$$
a=1, t=0
$$

some lin
translation.

L12-3

Similarly in 3D with 2×3 matrix whose columns have unit laugh and one mutually perspa dicular
Converse Every transformation of this type
Isometry f Hen to $|f(x) f(y)|=$
$|x Y|$. First. $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ isometry \Rightarrow so is f^{-1} $f, g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ isometries \Rightarrow so is g hf.
The. $(i) f$ isometry $\& A * B * C \Rightarrow$

$$
f(A) * f(B) * f(C) \text { and conversely }\left(\text { look at } f^{-1}\right) \text {. }
$$

(ii) f isometry and. $\{A, B, C\}$ collinear $\Rightarrow\{f(A), f(B), f(C)\}$ collinear, ind conversely
Proof. $(i) A * B * C \Rightarrow|A C|=|A B|+|A C|$

$$
L+. S=|f(A) f(C)| \quad \text { R.H.S }=|f(A) f(\beta)|+|f(B) f(C)| .
$$

Hence $|f(A) f(C)|=\mid f(A|f(B)|+|f(B) f(C)|$, 80 $f(A) * f(B) * f(C)$. The converse holds by going towards and using the fact that f^{-1} is an isometry.
(ii) $\mathrm{A}, \mathrm{B}, \mathrm{C}$ collinear \Rightarrow one is between othentwo. By (i) $A * B+C$ $\Rightarrow f(A) * f(B) * f(C)$, so $\{f(A), f(B), f(C)\}$ collinear. The cases $B \not C * A+C * A * B$ foll + w by interchanging roles of A, B, C Converaly if $\{f(A), f(B), f(C)\}$ allinear then one be tween other two. By (i) $f(A) \times f(B) * f(C) \Longrightarrow A * B * C$ as in preceding argument. The cases $f(B) * f(C) * f(A)$ and $f(C) * f(A) * f(B)$ foll ow similarly. Cove. $\{A, B, C\}$ noncallinear $\Leftrightarrow\{f(A), f(B), f(C)\}$ non coll linear. Insert page 4A here.

Note In 3D, isometries sued coplanar sets to coplanar sets and won coplomor sets to mon coplanar sets. The most effie int way to do this is using linear algebra.

Similarities $|f(X) f(Y)|=r|X Y|$, some $r>O$ (same r for all point pairs).

Theorem All similarity transformations $T: \mathbb{R} \rightarrow \mathbb{R}$ have the form $C T_{0}$ where $c>0$ and T_{0} is an isometry.
(Also Ind linear algebra course.)
Consequences T similarity
(i) $A * B * C \Longleftrightarrow T(A) * T(B) * T(C)$
(ii) T suds coll near paints to collinear points and noncollinear points to mon coll inear points.

