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3 : Neutral geometry 

In this section we shall investigate some of the logical equivalences in the list from the 
previous section.  These will play an important role in Section 4. 

We have noted that a great deal of work was done in the 17th and 18th century to study 
classical geometry without using Euclid’s Fifth Postulate; early in the 19th century this 
subject was called absolute geometry, but in modern texts it is generally known as 
neutral geometry.  In this section we shall develop some aspects of this subject more 
explicitly than in the preceding section.   We begin by recalling the formal definition of  a 
neutral geometry. 

Definition.   A neutral plane is given by data  �����, �, d, αααα    �  which satisfy all the axioms

in Moise except (possibly) Playfair’s Postulate or an equivalent statement such as 
Euclid’s Fifth Postulate.  Usually we simply denote a neutral plane by its underlying set 

of points  ����� 

In this setting, the efforts to prove the Fifth Postulate can be restated as follows: 

INDEPENDENCE PROBLEM FOR THE FIFTH POSTULATE.   If  �����is a neutral plane, 

is Playfair  ’s Postulate true in  ����?

It is important to note that all proofs for neutral planes must be done synthetically 
(without coordinates) because Playfair’s Postulate is essentially built into the coordinate 
approach to Euclidean geometry. 

The Saccheri – Legendre Theorem 

One of the cornerstones of neutral and non – Euclidean geometry is the study of the 
following issue: 

ANGLE SUMS OF TRIANGLES.  Given a triangle ����ABC, what can we say about the 

angle sum  �∠∠∠∠ABC� � �∠∠∠∠BCA� � �∠∠∠∠CAB�  and what geometric information does it 

carry? 

We know that the angle sum in Euclidean geometry is always 180°°°°,  and as noted in the

preceding section this fact is logically equivalent to the Fifth Postulate.   On the other 
hand, we have also seen that the angle sum in spherical geometry is always greater 
than and that the difference between these quantities is proportional to the area of a 
spherical triangle.  In any case, the angle sum of a triangle was a central object of study 
in 17th and 18th century efforts to prove the Fifth Postulate. 

Most of the arguments below are similar to proofs in high school geometry, with extra 
attention to questions about order and separation.  However, at several points we need 
the following properties of real numbers. 
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Archimedean Law.  Suppose that  b  and  a  are positive real numbers.  Then there is a 

positive integer  n  such that  na   >   b.����

Immediate consequence.  If  h  and  k  are positive real numbers, then there is a 

positive integer  n  such that  h�2n
  <   k.����

The second statement is proven in the exercises.  One informal way of seeing the first 

statement is to note that the positive number  b�a  can be written as   x  �  y,  where   x

is a nonnegative integer and  y  lies in the half � open interval  [0, 1); one can then take

n  ������x  �  1.

Our first result on angle sums is a result on finding new triangles with the same angle 
sums as a given one. 

Proposition 1.   Suppose that  A,  B,  C  are noncollinear points in the neutral plane  P� 
Then there exist noncollinear points  A′′′′, B′′′′, C′′′′  such that the following hold:  

1. The angle sums of  ����ABC  and  ����A′′′′B′′′′C′′′′  are equal; in other words, we have

�∠∠∠∠ABC�  �  �∠∠∠∠BCA�  �  �∠∠∠∠CAB�   =   �∠∠∠∠A′′′′B′′′′C′′′′�  �  �∠∠∠∠B′′′′C′′′′A′′′′�  �  �∠∠∠∠C′′′′A′′′′B′′′′�.

2. We also have the inequality �∠∠∠∠C′′′′A′′′′B′′′′�   �   ½ �∠∠∠∠CAB�.
3. 

Proof.   Let  D  be the midpoint of  [BC],  and let  E  be a point on  (AD  satisfying 

A∗D∗E  and  �AE�   �   2 �AD�; it follows that  �AD�   ��  �DE�.  We then have

����CDA   ≅≅≅≅  ����BDE  by  S.A.S.,  and therefore it follows that  �∠∠∠∠CAE�   ��  �∠∠∠∠AEB�
and �∠∠∠∠ACB�   ��  �∠∠∠∠CBE�.

CLAIM:   ����EAB  has the same angle sum as  ����CAB. —  As in the proof of the 

Exterior Angle Theorem, we know that  E  lies in the interior of ∠∠∠∠CAB.   Therefore we 

have �∠∠∠∠CAB�  �  �∠∠∠∠CAE� � �∠∠∠∠EAB�.   Since  C  lies on  (BD  and  D  lies in the

interior of ∠∠∠∠ABE,  we also have �∠∠∠∠ABE�  �  �∠∠∠∠ABC� � �∠∠∠∠CBE�.   Combining this
with the triangle congruence from the previous paragraph, we see that  

�∠∠∠∠EAB�  �� �∠∠∠∠ABE�  �� �∠∠∠∠BEA�   � 

�∠∠∠∠EAB�  �� �∠∠∠∠EBC�  �� �∠∠∠∠ABC�  ��� �∠∠∠∠BEA��  ��

�∠∠∠∠EAB�  �� �∠∠∠∠ACB�  �� �∠∠∠∠ABC�  �� �∠∠∠∠CAE�   � 

�∠∠∠∠BCA�  �� �∠∠∠∠ACB�  �� �∠∠∠∠ABC�.

It follows by a similar argument (reversing the roles of  B  and  C)  that 

�∠∠∠∠ACE�  �� �∠∠∠∠CEA�  �� �∠∠∠∠EAC�  ��

Same drawing as in 
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�∠∠∠∠ABC�  �� �∠∠∠∠BCA�  �� �∠∠∠∠CAB�.

In other words, both  ����EAC   and   ����EAB   have the same angle sum as   ����ABC. 

Since  �∠∠∠∠CAB�   ��� �∠∠∠∠CAE�  �� �∠∠∠∠EAB�  and the two summands in the right hand

expression are positive, at least one of them is less than or equal to  ½ �∠∠∠∠CAB�.
Depending upon whether  ∠∠∠∠CAE   or   ∠∠∠∠EAB   has this property, take  ����A′′′′B′′′′C′′′′  to be 

����AEC   or  ����ABE.����

Corollary 2.  If  εεεε  >  0  is a positive real number, then there is a triangle  ����A′′′′B′′′′C′′′′ 

which has the same angle sum as  ����ABC   but   �∠∠∠∠C′′′′A′′′′B′′′′�  <  εεεε    .

Proof.  Repeated application of Proposition 1 shows that for each positive integer  n  

there is a triangle  ����AnBnCn  with the same angle sum as  ����ABC  but such that 

�∠∠∠∠CnAnBn�   �   �∠∠∠∠CAB��2n.  Since we know that the right hand side is less than  εεεε
for  n  sufficiently large, the corollary follows.���� 

The preceding results allow us to prove half of the usual Euclidean theorem on angle 
sums: 

Theorem 3 (Saccheri – Legendre Theorem)   If  A,  B,  C  are noncollinear points in a 

neutral plane  P,  then  �∠∠∠∠ABC�  �  �∠∠∠∠BCA�  �  �∠∠∠∠CAB�    �    180°°°°.

Proof.   Suppose we have a triangle  ����ABC  for which the angle sum is strictly greater 

than  180°°°°, and write  �∠∠∠∠ABC�  �  �∠∠∠∠BCA�  �  �∠∠∠∠CAB�    �    180°°°°  �  δδδδ°°°°, where  δδδδ

is positive.  By Corollary  2  there is a triangle  ����A′′′′B′′′′C′′′′   which has the same angle sum 

as  ����ABC  but also satisfies  �∠∠∠∠C′′′′A′′′′B′′′′�   <   ½ δδδδ.   It then follows that

�∠∠∠∠B′′′′C′′′′A′′′′�  �  �∠∠∠∠A′′′′B′′′′C′′′′�    >   180°°°°  �  ½ δδδδ°°°°    >   180°°°°.

On the other hand, by a corollary to the Exterior Angle Theorem we also know that the 

sum of the measures of two vertex angles is always less than  180°°°°,  so we have a

contradiction.  The problem arises from our assumption that the angle sum of the original 

triangle is strictly greater than  180°°°°,  and therefore we conclude that the angle sum is at

most  180°°°°.����

Corollary 4.  If   A,  B,  C,  D  are the vertices of a convex quadrilateral in a neutral 

plane  P,  then  �∠∠∠∠ABC�  �  �∠∠∠∠BCD�� �  �∠∠∠∠CDA�  �  �∠∠∠∠DAB�    �   360°°°°.

Proof.   The idea is standard; we slice the quadrilateral into two triangles along a 
diagonal (in the drawing below, the diagonal is  [AC]). 

By the definition of a convex quadrilateral we know that  A  lies in the interior of  ∠∠∠∠BCD 

and  C  lies in the interior of  ∠∠∠∠DAB,  so that  �∠∠∠∠BCD�   ��  �∠∠∠∠ACD�  �  �∠∠∠∠ACB|   and



20 

likewise  �∠∠∠∠DAB�   �   �∠∠∠∠CAD�  �  �∠∠∠∠CAB|.  The Saccheri – Legendre Theorem

implies that  

�∠∠∠∠ABC�  �  �∠∠∠∠BCA�  �  �∠∠∠∠CAB�   ��  180°°°° 

|∠∠∠∠ADC�  �  �∠∠∠∠DCA�  �  �∠∠∠∠DAB�   ��  180°°°°

and if we combine these with the sum identities  in the preceding sentence we obtain 

|∠∠∠∠ABC�  �  �∠∠∠∠BCD�  �  �∠∠∠∠CDA�  �  �∠∠∠∠DAB|   �

|∠∠∠∠ABC�  �  �∠∠∠∠BCA�  �  �∠∠∠∠CAB�  �  �∠∠∠∠ADC�  �  �∠∠∠∠DCA�  �  �∠∠∠∠DAB�   �

180°°°°  �  180°°°°   �   360°°°°

which is the statement of the corollary.���� 

In Section  1  we noted that the angle sum of a triangle is always greater than  180°°°°  
degrees in spherical geometry.  A unified perspective on neutral and spherical geometry 

will be discussed in Section  5. 

Rectangles in neutral geometry 

Rectangles are fundamentally important in both the synthetic and the analytic 

approaches to Euclidean geometry, so it is not surprising that rectangles and near – 

rectangles also play an important role in neutral geometry.  Before we define the near – 
rectangles that are studied in neutral geometry, it will be convenient to have a simple 
criterion for recognizing certain special convex quadrilaterals. 

Proposition 5.   Let  A,  B,  C,  D  be four points in a neutral plane  ����  such that no 

three are collinear and  AB  is perpendicular to  BC  and  AD.  If  C  and  D  lie on the 
same side of  AB,  then  A,  B,  C,  D  form the vertices of a convex quadrilateral. 

Proof.   The lines  BC  and  AD  are parallel since they are perpendicular to the same 
line (and they are unequal because the four given points are noncollinear).   If we 
combine this with the condition in the second sentence of the proposition, we see that it 
is only necessary to prove that  A  and  B  lie on the same side of  CD,  so let us 
suppose this is false.  In this case it follows that the segment  (AB)  and the line  CD  
have a point  E  in common.  We shall use this to derive a contradiction.  

Since  C  and  D  lie on the same side of  AB, it follows that the rays  [EC  and  [ED  are 
equal (in the picture it appears that the points are not collinear, but this is not a problem 

since we are trying to derive a contradiction).  Therefore we have  �∠∠∠∠AED�  �� �∠∠∠∠CEB�

�     180°°°°.  On the other hand, two applications of the Exterior Angle Theorem imply
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that �∠∠∠∠AED�  �  �∠∠∠∠AEC�   >  �∠∠∠∠CEB�   �   90°°°°  and  �∠∠∠∠CEB�  �  �∠∠∠∠DEB�   > 

�∠∠∠∠DAB�   �   90°°°°, which in turn implies that  �∠∠∠∠AED�� �� �∠∠∠∠CEB�   >   180°°°°.  Thus

we have a contradiction; the source of the contradiction was the assumption that  A  and 
B  do not lie on the same side of  CD,  and therefore  A and B must lie on the same 
side of  CD;  as noted before, this is what we needed to complete the proof.���� 

The following analogs of rectangles in neutral geometry were studied extensively by 
Saccheri, but they also appear in earlier mathematical writings of Omar Khayyam. 

Definition.    Let  A,  B,  C,  D  be four points in a neutral plane  ����  such that no three 

are collinear.  We shall say that these points (in the given order) form the vertices of a 

Saccheri quadrilateral  with base  AB  provided that  (1)  the line  AB  is 

perpendicular to  BC  and  AD,   (2)  the points  C  and  D  lie on the same side of  AB, 

(3)  the lengths of the sides  [BC]  and  [AD]  are equal — in other words, we have 

�AD�  �  �BC�.   In some books and articles, such a figure is called an isosceles

birectangle. 

By the previous proposition we know that  A,  B,  C,  D  are the vertices of a convex 
quadrilateral, and we say that this quadrilateral  �ABCD  is a Saccheri quadrilateral 

with base  AB.  —  The reason for considering Saccheri quadrilaterals is that it is always 

possible to construct such figures in a neutral plane, and in fact if  p  and  q  are arbitrary 

positive real numbers then there is a Saccheri quadrilateral  �ABCD  with base  AB  

such that   �AD�  �  �BC�  �  p  and  �AB�  �  q  (the proof is left to the exercises). 

Of course, a rectangle in Euclidean geometry is a Saccheri quadrilateral, and the next 
result describes some common properties of Euclidean rectangles that also hold for 
Saccheri quadrilaterals in neutral geometry. 

Proposition 6.  If  A,  B,  C,  D  are the vertices of a Saccheri quadrilateral with base 

AB,  then  �AC�  �  �BD�  and  �∠∠∠∠CDA�  �  �∠∠∠∠DCB�   �   90°°°°.  Furthermore, the line

joining the midpoints of  [AB]  and   [CD]   is perpendicular to both  AB  and  CD. 

A proof of this result is sketched in the exercises.���� 

The second part of the previous result implies that the line joining the midpoints of the 

top and base split the Saccheri quadrilateral into to near – rectangles with a different 
definition. 

Definition.    Let  A,  B,  C,  D  be four points in a neutral plane  ����  such that no three 

are collinear.  We shall say that these points (in the given order) form the vertices of a 
Lambert quadrilateral  provided three of the four lines  AB,  BC,  CD,  DA  are 
perpendicular to each other (hence there are right angles at three of the four vertices). 

In this case it is also straightforward to see that  A,  B,  C,  D  are the vertices of a 
convex quadrilateral.  Suppose, say, that we have right angles at  A,  B  and  C.  As in 



22 

the case of Saccheri quadrilaterals we know that  AD  is parallel to  BC, but now we also 
know that  AB  and  CD  are parallel because they are both perpendicular to  BC.  

Predictably, under these conditions we say that the quadrilateral  �ABCD  is a  

Lambert quadrilateral.  —   It follows that if   �XYZW  is a Saccheri quadrilateral with 

base  XY,  then the line joining the midpoints of  [XY]  and  [ZW]  splits  �XYZW  into 
two Lambert quadrilaterals (this is shown in one of the exercises). 

It is also fairly easy to construct Lambert quadrilaterals in a neutral plane.  In fact, if  p 

and  q  are arbitrary positive real numbers then there is a Lambert quadrilateral  

�ABCD  with right angles at  A,  B,  and  C  such that  �AD�  �   p  and  �AB�  �   q

(the proof is again left to the exercises).   By Corollary  4  we know that  �∠∠∠∠CDA�   � 

90°°°°. 

Having defined types of near – rectangles that exist in every neutral plane, we can now 

give a neutral � geometric definition of “genuine” rectangles:

Definition.    Let  A,  B,  C,  D  be four points in a neutral plane  ����  such that no three 

are collinear.  We shall say that these points form the vertices of a rectangle (in the 
given order) provided the four lines  AB,  BC,  CD,  DA  are perpendicular to each other 
at  B,  C,  D  and  A.   As before, the points  A,  B,  C,  D  (in the given order) are the 

vertices of a convex quadrilateral, and we say that the quadrilateral  �ABCD  is a  
rectangle.    

Since we do not have Playfair’s Postulate at our disposal, we must be careful 
about not using results from Euclidean geometry which depend upon this 
postulate when we prove theorems about rectangles in neutral geometry, and 
frequenty we need new synthetic proofs for extremely familiar facts.   Here are a few 
examples. 

Theorem 7.  If  A,  B,  C,  D  are the vertices of a rectangle, then   �AB�   ��  �CD� 

and   �AD�  �  �BC�.  Furthermore, we have  ����DAB   ≅≅≅≅   ����BCD,  and the angle sums

for these triangles are equal to  180°°°°.

Proof.   In order to simplify some of the algebraic manipulations, it is helpful to denote 
various angle measures by letters: 

�∠∠∠∠ADB�   �   αααα,    �∠∠∠∠DBA�   �   ββββ,    �∠∠∠∠DBC�   �   γγγγ,    �∠∠∠∠BDC�  �  δδδδ

Since  D  and  B  lie in the interiors of  ∠∠∠∠CBA  and  ∠∠∠∠CDA  respectively, it follows that 

αααα  �  δ δ δ δ    �    90°°°°     �     ββββ  �  γγγγ    ....

On the other hand, the Saccheri – Legendre Theorem implies and the perpendicularity 

conditions imply that  αααα  +  ββββ      �   90°°°°  and  γγγγ     +  δδδδ   �   90°°°°.  These imply that the sum
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of  αααα,   ββββ,   γγγγ,   δδδδ        is less than or equal to  180°°°°,  while the displayed equations imply

that the sum of these four numbers is equal to  180°°°°.   If either of the inequalities were

strict, then the sum would be strictly less than  180°°°°,  and hence we have a pair of

equations  αααα  �  β β β β   �   90°°°°    �    γ γ γ γ  �  δδδδ    .        Thus we have a system of two linear

equations for  αααα,   ββββ,   γγγγ,   δδδδ, , , ,     and the solutions of this system are given by  αααα  �  ββββ     and

δδδδ  �  γγγγ    .        The conclusion about angle sums for the two triangles  ����DAB  and  ����BCD

follows immediately from this. 

Furthermore, it also follows that  ����DAB   ≅≅≅≅   ����BCD  by  S.A.S.  The remaining

conclusions  �AB�  �  �CD�  and  �AD�  �  �BC�  follow from this triangle
congruence.����  

IMPORTANT NOTE.  Although we have defined the concept of a rectangle for an 
arbitrary neutral plane,  we do not necessarily know if there are any rectangles at all 

in a given neutral plane  P  unless we know that Playfair’s Postulate holds in  P���
The logical relationship between the Euclidean Parallel Postulate and the existence of 

rectangles was a central point in the writings of  A. – C. Clairaut (1713 � 1765) on

classical Euclidean geometry.  It turns out that the existence of even one rectangle in  ����  

has extremely strong consequences, most of which arise from the following result. 

Theorem 8.  Suppose there is at least one rectangle in a given neutral plane  �����  Then 

for every pair of positive real numbers  p  and  q  there is a rectangle  �ABCD  such 

that   �AB�  �  �CD�  �  p  and  �AD�   �   �BC�   �   q.

The proof of this theorem is fairly long and has several steps. 

1. A splicing construction, which shows if there is a rectangle whose sides have

dimensions   x   and   �   and a rectangle whose sides have dimensions   y   and

�,  then there is a rectangle whose sides have dimensions  (x � y)  and  �.

2. Repeated application of the splicing construction to show that if there is a

rectangle whose sides have dimensions  x  and  �  and we are given positive

integers  m  and  n, then there is a rectangle whose sides have dimensions  m x
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and  n �.    In the drawing below,  m  =  3  and  n  =  2.

3. Combining the previous two steps with the Archimedean Property of real
numbers to show that if a rectangle exists, then there is a rectangle whose sides

have dimensions  u   and   v,  where  u  >  p  and  v  >  q.

4. A trimming – down construction, which shows that if there is a rectangle whose

sides have dimensions  x  and  �  and  y  is a positive number less than  x, then

there is a rectangle whose sides have dimensions  y  and  �.  Two applications

of this combine with the third step to prove Theorem  8.
Xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

The proofs for several of these steps are quite lengthy in their own right.  Therefore we 
shall now move forward, with the details in an Appendix to this section.���� 

The All – or – Nothing Theorem for angle sums 

The preceding result on rectangles has an immediate consequence for angle sums of 
triangles. 

Theorem 9.   If a rectangle exists in a neutral plane  ����� then every right triangle in  ���� 

has an angle sum equal to 180°°°°. 

Proof.   Suppose we are given right triangle  ����ABC   with a right angle at  B.  By the 

preceding result there is a rectangle  �WXYZ  such that  �AB�  �  �WX�  and

�BC�  �  �XY�.  By  S.A.S.  we have  ����ABC   ≅≅≅≅   ����WXY;  in particular, the angle

sums of these triangles are equal.  On the other hand, the proof of Theorem  7  implies 
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that the angle sum of  ����WXY  is equal to  180°°°°, so the same must be true for

����ABC.����

This result extends directly to arbitrary triangles in the neutral plane ������

Theorem 10.   If a rectangle exists in a neutral plane  ����� then every triangle in  ����  has 

an angle sum equal to  180°°°°.

Proof.   The idea is simple; we split the given triangle into two right triangles and apply 

the preceding result.  By a corollary to the Exterior Angle Theorem, we know that the 
perpendicular from one vertex of a triangle meets the opposite side in a point between 
the other two vertices (in particular, we can take the vertex opposite the longest side).  

Suppose now that the triangle is labeled  ����ABC  so that the foot  D  of the 
perpendicular from  A  to  BC  lies on the open segment  (BC). 

We know that  D  lies in the interior of  ∠∠∠∠BAC, and therefore we have 

�∠∠∠∠BAD�  �  �∠∠∠∠DAC�   �   �∠∠∠∠BAC�.

By the previous result on angle sums for right triangles, we also have 

�∠∠∠∠BAD�  �  �∠∠∠∠ADB�   �    90°°°°    �    �∠∠∠∠DAC�  �  �∠∠∠∠ACD�

and if we combine all these equations we find that  

�∠∠∠∠ABC�  �  �∠∠∠∠BCA�  �  �∠∠∠∠CAB�   �    180°°°°

which is the desired conclusion.���� 

There is also a converse to the preceding two results. 

Theorem 11.   If a neutral plane   ����  contains at least one triangle whose angle sum is 

equal to 180°°°°, then  ����  contains a rectangle. 

Proof.   The idea is to reverse the preceding discussion; we first show that under the 

given conditions there must be a right triangle whose angle sum is equal to  180°°°°, and

then we use this to show that there is a rectangle. 

FIRST STEP:  If there is a triangle whose angle sum is  180°°°°, then there is also a

right triangle with this property. 

Given a triangle whose angle sum is  180°°°°, as in the previous result we label the

vertices  A,  B,  C  so that the foot of the perpendicular from  A  to  BC  lies on the open 

segment  (BC).  Reasoning once again as in the proof of Theorem  10  we find 

Angle sum (����ABD)   �  Angle sum (����ADC)    � 

Angle sum (����ABC)   �  180°°°°    ��   180°°°°  �  180°°°°    ��   360°°°°. 




