Before Gauss, some mathematicians (for example, Klügel) had speculated that a proof of the Fifth Postulate might be out of reach. However, Gauss (and to a lesser extent a contemporaries like Schweikart and Taurinus) took things an important step further, concluding that the negation of the Fifth Postulate yields a geometrical system which is very different from Euclidean geometry in some respects but has exactly the same degree of logical validity (compare also the passage from the letter to Olbers at the beginning of this unit). Working independently of Gauss, J. Bolyai (1802 - 1860) and N. I. Lobachevsky (1792-1856) reached the same conclusions as Gauss (each one independently of the other), which Bolyai summarized in a frequently repeated quotation:

Out of nothing I have created a strange new universe.
Both Bolyai and Lobachevsky took everything one important step further than Gauss by publishing their conclusions, and for this reason they share credit for the first published recognition of hyperbolic geometry as a mathematically legitimate subject.

Appendix to Section 3: Proof of Theorem 8

The major steps in the argument will be presented as lemmas.
Lemma 8A. (Splicing Property). Suppose that $\square \mathrm{ABCD}$ is a rectangle, and let $\mathbf{C}_{1} \in\left(\mathbf{D C}\right.$ be a point such rat $\left|\mathrm{DC}_{1}\right|=2|\mathrm{DC}|$. Let \mathbf{B}_{1} be the foot of the perpendicular from $\mathbf{C}_{\mathbf{1}}$ to $\mathbf{A B}$. Then $\left|\angle \mathbf{D C}_{\mathbf{1}} \mathbf{B}\right|=\mathbf{9 0}^{\circ}$ and the points $\mathbf{A}, \mathbf{B}_{\mathbf{1}}, \mathbf{C}_{\mathbf{1}}$ and \mathbf{D} (in that order) are the vertices of a rectangle.

Proof. First of all, the lines $\mathbf{A D}, \mathbf{B C}$, and $\mathbf{B}_{1} \mathbf{C}$, are all parallel to each other because every two of them have a common perpendicular (namely, $\mathbf{A B}$). Therefore $\mathbf{A D}$ and $\mathbf{B}_{1} \mathbf{C}_{1}$ are contained in the \mathbf{D} - and C_{1} - sides of $\mathbf{B C}$ respectively. But $\left|\mathrm{DC}_{1}\right|=2|\mathrm{DC}|$ and $C_{1} \in$ ($D C$ imply $D * C * C_{1}$ is true. This in turn implies that D and C_{1} are on opposite sides of $B C$. Since B is the common point of the lines $A B_{1}$ and $B C$, it follows that $A * B * B_{1}$ is true.

Since $\mathbf{A D}$ and $\mathbf{B}_{1} \mathbf{C}_{1}$ are parallel (they have a common perpendicular), the points \mathbf{B}_{1} and $\mathbf{C}_{\mathbf{1}}$ lie on the same side of $\mathbf{A D}$. Hence $\mathbf{A}, \mathbf{B}_{\mathbf{1}}, \mathbf{C}_{\mathbf{1}}$, and \mathbf{D} (in that order) form the vertices of a convex quadrilateral. Likewise $\mathbf{B}, \mathbf{B}_{\mathbf{1}}, \mathbf{C}_{\mathbf{1}}$, and \mathbf{C} form the vertices of a convex quadrilateral. By construction, S.A.S. applies to show $\triangle A D C \cong \triangle B C C_{1}$. It follows
that $|A C|=\left|B C_{1}\right|, \gamma=\left|\angle C B C_{1}\right|=|\angle D A C|=\alpha$, and $\eta=\left|\angle B C_{1} C\right|=$ $|\angle A C D|$.
On the other hand, if $\xi=\left|\angle \mathrm{C}_{1} \mathrm{C} \mathrm{B}_{1}\right|$ then

$$
\alpha+\beta=90^{\circ}=\gamma+\xi
$$

Therefore $\alpha=\gamma$ implies $\beta=\xi$.
By A.A.S. it follows that $\triangle A B C \cong \triangle B_{1} C_{1}$, and hence $\alpha=\delta=\left|\angle B C_{1} B_{1}\right|$. This implies that $\eta+\delta=90^{\circ}$. But then it follows that $\left|\angle D C_{1} B_{1}\right|=\eta+\delta$ $=90^{\circ}$.

Lemma 8B. If there is a rectangle $\square \mathrm{ABCD}$ in the neutral piane under consideration, then for every positive integer \boldsymbol{n} there is a rectangle $\square A^{\prime} \mathbf{B}^{\prime} \mathbf{C}^{\prime} \mathbf{D}^{\prime}$ with $\left|\mathrm{A}^{\prime} \mathbf{B}^{\prime}\right|=\left|\mathrm{C}^{\prime} \mathrm{D}^{\prime}\right|$ $=n|A B|=n|C D|$ and $\left|A^{\prime} D^{\prime}\right|=\left|B^{\prime} C^{\prime}\right|=|A D|=|B C|$.

Proof. The case $\boldsymbol{n}=\mathbf{2}$ was done in the preceding lemma. Assume by induction that we have $\mathbf{B}=\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{n-1}$ and $\mathbf{C}=\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{n-1}$ such that

$$
A=A_{0} * A_{1} * A_{2} * \ldots * A_{n-1} \text { and } D=C_{0} * C_{1} * C_{2} * \ldots * C_{n-1}
$$

(the notation means that $\mathbf{X}_{p} * \mathbf{X}_{q} * \mathbf{X}_{r}$ if $\boldsymbol{p}<\boldsymbol{q}<\boldsymbol{r}$) and the following additional conditions:

For $\boldsymbol{k}=\mathbf{1}, \ldots, \boldsymbol{n}-\mathbf{1}$ we have $|\mathrm{AB}|=|\mathrm{CD}|=\left|\mathbf{A}_{\boldsymbol{k}-1} \mathbf{A}_{\boldsymbol{k}}\right|=\left|\mathrm{C}_{\boldsymbol{k - 1}} \mathrm{C}_{\boldsymbol{k}}\right|$.
For $\boldsymbol{k}=\mathbf{1}, \ldots, \boldsymbol{n}-\mathbf{1}$ the line $\mathrm{C}_{k} \mathrm{~A}_{\boldsymbol{k}}$ is perpendicular to both AB and CD.

Now apply Lemma 8 A to the rectangle $\mathbf{A}_{n-2} \mathbf{A}_{n-1} \mathbf{C}_{n-1} \mathbf{C}_{n-2}$ to obtain \mathbf{A}_{n} and \mathbf{C}_{n} such that $\mathbf{A}_{n-2} * \mathbf{A}_{n-1} * \mathbf{A}_{n}$ and $\mathbf{C}_{n-2} * \mathbf{C}_{n-1} * \mathbf{C}_{n},|\mathrm{AB}|=|\mathrm{CD}|=\left|\mathbf{A}_{n-1} \mathbf{A}_{n}\right|=\left|\mathbf{C}_{n-1} \mathbf{C}_{n}\right|$, and $\mathbf{C}_{n} \mathbf{A}_{n}$ is perpendicular to both $A B$ and CD.

Corollary 8C. If there is a rectangle $\square \mathrm{ABCD}$ in the neutral piane under consideration, then for each pair of integers $\boldsymbol{n}, \boldsymbol{m}>\mathbf{0}$ there is a rectangle $\square \mathrm{A}^{\prime} \mathbf{B}^{\prime} \mathbf{C}^{\prime} \mathrm{D}^{\prime}$ with $\left|\mathrm{A}^{\prime} \mathbf{B}^{\prime}\right|=$ $\left|C^{\prime} D^{\prime}\right|=n|A B|=n|C D|$ and $\left|A^{\prime} D^{\prime}\right|=\left|B^{\prime} C^{\prime}\right|=m|A D|=m|B C|$.

Proof. First apply Lemma B to get a rectangle $\square A^{*} B^{*} C^{*} D^{*}$ with $\left|A^{*} B^{*}\right|=n|A B|$ and $\left|\mathbf{B}^{*} \mathbf{C}^{*}\right|=|\mathbf{B C}|$. Now apply Lemma B again to get a new rectangle $\square \mathbf{A}^{\prime} \mathbf{B}^{\prime} \mathbf{C}^{\prime} \mathbf{D}^{\prime}$ with
$\left|A^{\prime} B^{\prime}\right|=\left|A^{*} B^{*}\right|$ and $\left|B^{\prime} C^{\prime}\right|=m\left|B^{*} C^{*}\right|$. It follows that $\left|A^{\prime} B^{\prime}\right|=\left|C^{\prime} D^{\prime}\right|=n|A B|$
$=n|C D|$ and $\left|A^{\prime} D^{\prime}\right|=\left|B^{\prime} C^{\prime}\right|=m|A D|=m|B C|$.
The next lemma allows us to take a large rectangle and trim it to another of srnalfer size.
Lemma 8D. Let $\square \mathrm{ABCD}$ be a rectangle, let $\mathrm{X} \in(\mathrm{CD})$, and let \mathbf{Y} be the foot of the perpendicular from \mathbf{X} to $\mathbf{A B}$. Then $\mathbf{A}, \mathbf{Y}, \mathbf{X}$, and \mathbf{D} (in that order) are the vertices of a rectangle.

Proof. The lines AD, XY, and BC are all parallel because they are all perpendicular to $\mathbf{A B}$. Hence $\mathbf{A D}$ is contained in the \mathbf{D} - side of $\mathbf{X Y}$ and $\mathbf{B C}$ is contained in the $\mathbf{C}-$ side of $\mathbf{X Y}$. But $\mathbf{C} * \mathbf{X} * \mathbf{D}$ since \mathbf{X} lies on (BC), and therefore \mathbf{C} and \mathbf{D} lie on opposite sides of $\mathbf{X Y}$. Hence $\mathbf{A D}$ and $\mathbf{B C}$ also lie entirely on opposite sides of $\mathbf{X Y}$. Since $\mathbf{A B}$ and $\mathbf{X Y}$ meet at \mathbf{Y}, it follows that $\mathbf{A} * \mathbf{Y} * \mathbf{B}$ must be true.

Label the angle measures as indicated in the drawing above:

| $\alpha=\|\angle Y D X\|$ | $\xi=\|\angle C Y X\|$ |
| :--- | :--- | :--- |
| $\beta=\|\angle D Y X\|$ | $\eta=\|\angle X C Y\|$ |
| $\gamma=\|\angle A D Y\|$ | $\zeta=\|\angle C Y B\|$ |
| $\delta=\|\angle A Y D\|$ | $\omega=\|\angle Y C B\|$ |

Since $\mathbf{A D}$ is parallel to $\mathbf{X Y}, \mathbf{C D}$ is parallel to $\mathbf{X Y}$, and $\mathbf{A B}$ is parallel to $\mathbf{C D}$, it follows that $\mathbf{A}, \mathbf{Y}, \mathbf{X}$, and \mathbf{D} and $\mathbf{Y}, \mathbf{B}, \mathbf{X}$, and \mathbf{X} (in these orders) form tbe vertices of a convex quadrilateral. Therefore \mathbf{D} lies in the interior of $\angle \mathrm{AYX}, \mathrm{Y}$ lies in the interior of $\angle \mathrm{ADYX}$, C lies in the interior of $\angle \mathrm{XYB}$, and Y lies in the interior of $\angle \mathrm{XCB}$. These imply the following four equations:

$\alpha+\gamma=90^{\circ}$		$\xi+\zeta=90^{\circ}$
$\beta+\delta=90^{\circ}$		$\eta+\omega=90^{\circ}$

The Saccheri - Legendre Theorem implies the following additional inequalities:

$\xi+\gamma \leq 90^{\circ}$	$\omega+\zeta \leq 90^{\circ}$

Taken together, these imply $90^{\circ} \leq \alpha+\beta$ and $90^{\circ} \leq \xi+\eta$. Therefore the Saccheri - Legendre Theorem irnplies that both $|\angle D X Y|$ and $|\angle C X Y|$ are less than or equal to 90°. On the other hand, $\mathbf{C} * \mathbf{X} * \mathbf{D}$ implies that $|\angle D X Y|+|\angle C X Y|=$ $18 \mathbf{0}^{\circ}$. This can happen only if both $|\angle D X Y|$ and $|\angle C X Y|$ are equal to 90°. But this now implies $\mathbf{X Y}$ is perpendicular to $\mathbf{C D}$, so that $\mathbf{A}, \mathbf{Y}, \mathbf{X}$, and \mathbf{D} (in that order) are the vertices of a rectangle.

Proof of Theorem 8. Given rectangle $\square \mathrm{ABCD}$ and real numbers $\boldsymbol{p}, \boldsymbol{q}>\mathbf{0}$, find positive integers \boldsymbol{n} and \boldsymbol{m} so that $\boldsymbol{p}<\boldsymbol{n}|\mathrm{AB}|$ and $\boldsymbol{q}<\boldsymbol{m}|\mathrm{AD}|$. Form a rectangle $\square A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ with $\left|A^{\prime} B^{\prime}\right|=n|A B|$ and $\left|A^{\prime} D^{\prime}\right|=q|A D|$.

should be
Let $\mathbf{X} \in\left(\mathbf{A}^{\prime} \mathbf{B}^{\prime}\right)$ satisfy $\left|\mathbf{A}^{\prime} \mathbf{X}\right|=\boldsymbol{p}<\left|\mathbf{A}^{\prime} \mathbf{B}^{\prime}\right|$, and let \mathbf{Y} be the foot of the perpendicular from \mathbf{X} to $\mathbf{C}^{\prime} \mathbf{D}^{\prime}$. Then by Lemma 8 D one obtains a rectangle $\square \mathbf{A}^{\prime} \mathbf{V} \mathbf{K D}^{\prime}$ with $\left|A^{\prime} X\right|=p$ and $\left|A^{\prime} D^{\prime}\right|=q|A D|$.
Now let $\mathbf{W} \in\left(\mathbf{A}^{\prime} \mathbf{D}^{\prime}\right)$ satisfy $\left|\mathbf{A}^{\prime} \mathbf{W}\right|=\boldsymbol{q}<\left|\mathbf{A}^{\prime} \mathbf{D}^{\prime}\right|$, and let \mathbf{V} be the foot of
should be
the perpendicular from \mathbf{Z} to $\mathbf{X Y}$. Then $\mathbf{A}^{\prime}, \boldsymbol{Y}, \mathbf{V}$, and \mathbf{W} (in that order) are the vertices \mathbf{X} of a rectangle with $\left|A^{\prime} \mathbf{X}\right|=p$ and $\left|A^{\prime} \mathbf{W}\right|=q . ⿷$

