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that the angle sum of  WXY  is equal to  180°°°°, so the same must be true for
ABC.

This result extends directly to arbitrary triangles in the neutral plane 

Theorem 10.   If a rectangle exists in a neutral plane   then every triangle in    has 

an angle sum equal to  180°°°°.

Proof.   The idea is simple; we split the given triangle into two right triangles and apply 
the preceding result.  By a corollary to the Exterior Angle Theorem, we know that the 
perpendicular from one vertex of a triangle meets the opposite side in a point between 
the other two vertices (in particular, we can take the vertex opposite the longest side).  
Suppose now that the triangle is labeled  ABC  so that the foot  D  of the 
perpendicular from  A  to  BC  lies on the open segment  (BC). 

We know that  D  lies in the interior of  ∠∠∠∠BAC, and therefore we have 

∠∠∠∠BAD     ∠∠∠∠DAC       ∠∠∠∠BAC .

By the previous result on angle sums for right triangles, we also have 

∠∠∠∠BAD     ∠∠∠∠ADB        90°°°°        ∠∠∠∠DAC     ∠∠∠∠ACD

and if we combine all these equations we find that  

∠∠∠∠ABC     ∠∠∠∠BCA     ∠∠∠∠CAB        180°°°°

which is the desired conclusion.  

There is also a converse to the preceding two results. 

Theorem 11.   If a neutral plane     contains at least one triangle whose angle sum is 

equal to 180°°°°, then    contains a rectangle. 

Proof.   The idea is to reverse the preceding discussion; we first show that under the 

given conditions there must be a right triangle whose angle sum is equal to  180°°°°, and
then we use this to show that there is a rectangle. 

FIRST STEP:  If there is a triangle whose angle sum is  180°°°°, then there is also a
right triangle with this property. 

Given a triangle whose angle sum is  180°°°°, as in the previous result we label the
vertices  A,  B,  C  so that the foot of the perpendicular from  A  to  BC  lies on the open 
segment  (BC).  Reasoning once again as in the proof of Theorem  10  we find 

Angle sum ( ABD)     Angle sum ( ADC)     

Angle sum ( ABC)     180°°°°       180°°°°    180°°°°       360°°°°. 
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Since each of the summands on the left hand side is at most  180°°°°, it follows that each

must be equal to  180°°°°,  (if either were strictly less, then the left side would be less than

360°°°°).  Thus the two right triangles  ABD  and  ADC  have angle sums equal to

180°°°°.

SECOND STEP:  If there is a right triangle whose angle sum is  180°°°°, then there is
also a rectangle. 

Once again the idea is simple.  We shall construct another right triangle with the same 
hypotenuse to obtain a rectangle.  Suppose that  ABC  is the right triangle whose 

angle sum is equal to  180°°°°,  and that the right angle of this triangle is at  B.

By the Protractor Postulate there is a unique ray  [CE  such that  (CE is on the side of  
AC  opposite  B  and  ∠∠∠∠ECA     ∠∠∠∠BAC .  Take  D  to be the unique point on  (CE

such that  AB     CD .  Then Theorem 7 and   S.A.S.  imply that  BAC   ≅≅≅≅
DCA.   In particular, we have  ∠∠∠∠DAC     ∠∠∠∠BCA   and  ∠∠∠∠ADC     ∠∠∠∠ABC .

It follows that  AD  and  DC  are perpendicular, so we know there are right angles at  B 
and  D.  Furthermore, the Alternate Interior Angle Theorem (more correctly, the half 
which is valid in neutral geometry) implies that the lines  AB  and  CD  are parallel, and 
likewise the same result and the triangle congruence imply that  AD  and  BC  are 
parallel.  As in the discussion of Lambert quadrilaterals, these conditions imply that  A,  
B,  C,  D  form the vertices of a convex quadrilateral.  We shall use this to prove that 
there are also right angles at  A  and  C. 

Since we now know we have a convex quadrilateral, it follows that  A  and  C  lie in the 
interiors of  ∠∠∠∠BCD  and  ∠∠∠∠DAB  respectively.  Therefore we have 

∠∠∠∠BCD       ∠∠∠∠ACD     ∠∠∠∠ACB       ∠∠∠∠BAC     ∠∠∠∠ACB       90°°°°

where the last equation holds because of our assumption about the angle sum of the 
right triangle  ABC.  Thus we know that there also is a right angle at the vertex  C.  
But we also have  

∠∠∠∠BAD       ∠∠∠∠BAC     ∠∠∠∠BCA       ∠∠∠∠ACD     ∠∠∠∠BCA       90°°°°

where the final equation this time follows because we have shown there is a right angle 
at  C.   Thus we see that there is also a right angle at  A  and therefore we have a 
rectangle.  

This brings us to the main result of this section. 

See lecture16aa.pdf 
for a more complete 
proof
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Theorem 12. (All – or – Nothing Theorem)   In a given neutral plane ,  EITHER

every triangle has an angle sum is equal to  180°°°°  OR ELSE   no triangle  has an angle

sum equal to  180°°°°.  In the second case the angle sum of every triangle is strictly less

than  180°°°°.  

Proof.   This is mainly a matter of sorting through the preceding results.  If one triangle 

has an angle sum equal to  180°°°°, then by Theorem  11  a rectangle exists, and in that

case Theorem  10  implies that every triangle has angle sum equal to  180°°°°.  Therefore 
it is impossible to have a neutral plane in which some triangles have angle sums equal 

to  180°°°°  but others do not.  Finally, by the Saccheri – Legendre Theorem we know that

if no triangle has angle sum equal to  180°°°°  then every triangle must have an angle sum

that is strictly less than  180°°°°.

The path to hyperbolic geometry 

The sum of the three angles of a plane triangle cannot be greater than 
180° … But the situation is quite different in the second part — that the 
sum of the angles cannot be less than 180°; this is the critical point, the 
reef on which all the wrecks occur. 

C. F. Gauss,  Letter to F. (W.) Bolyai 

When you have eliminated the impossible, whatever remains, however 
improbable [it may seem], must be the truth. 

A. C. Doyle (1859  1930),  Sherlock Holmes  Sign of the Four 

In some respects, the results of this section provide reasons to be optimistic about 
finding a proof of Euclid’s Fifth Postulate in an arbitrary neutral plane.   First of all, the 
results on rectangles and angle sums show that Playfair’s Postulate is equivalent to 
statements that look much weaker (for example, the existence of  just one rectangle  or 

just one triangle  whose angle sum is 180°°°°).   Furthermore, the results suggest that
the negation of Playfair’s Postulate leads to consequences which seem extremely 
strange and perhaps even unimaginable.   However, as Gauss indicated in his letter, no 
one was able to overcome the final hurdle and give a complete proof of Euclid’s Fifth 
Postulate from the other axioms for Euclidean geometry.  Although the efforts to prove 
Euclid’s Fifth Postulate did not lead to the proof, the best work on the problem provided 
very extensive, and in some cases nearly complete, information on strange things that 
would happen if one assumes that the Fifth Postulate is false.  We shall examine some 
of these phenomena in the remaining sections of this unit. 

Ultimately these considerations led to a viewpoint expressed in another quotation from 
Gauss’ correspondence:   

The theorems of this geometry appear to be paradoxical and, to the uninitiated, 
absurd; but calm, steady reflection reveals that they contain nothing at all 
impossible.  (Letter to Taurinus, 1824; one should compare this to the Sherlock 
Holmes quotation given above.) 
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Before Gauss, some mathematicians (for example, Klügel) had speculated that a proof 
of the Fifth Postulate might be out of reach.  However, Gauss (and to a lesser extent a 
contemporaries like Schweikart and Taurinus) took things an important step further, 
concluding that the negation of the Fifth Postulate yields a geometrical system which is 
very different from Euclidean geometry in some respects but has exactly the same 
degree of logical validity (compare also the passage from the letter to Olbers at the 
beginning of this unit).   Working independently of Gauss, J. Bolyai (1802  1860) and

N. I. Lobachevsky (1792  1856) reached the same conclusions as Gauss (each one
independently of the other), which Bolyai summarized in a frequently repeated quotation: 

Out of nothing I have created a strange new universe. 

Both Bolyai and Lobachevsky took everything one important step further than Gauss by 
publishing their conclusions, and for this reason they share credit for the first published 
recognition of hyperbolic geometry as a mathematically legitimate subject. 

Proof.   First of aIl, the lines AD, BC, and B1C, are all parallel to each other because 
every two of them have a common perpendicular (namely, AB).  Therefore AD and B1C1 
are contained in the D – and C1 – sides of BC respectively.  But   DC1  =  2 DC  and

C1 ∈∈∈∈ (DC  imply D∗C∗C1 is true. This in turn implies that D and C1 are on opposite sides
of BC.   Since  B  is the common point of the lines AB1 and BC, it follows that  A∗B∗B1 
is true. 

Since AD and B1C1 are parallel (they have a common perpendicular), the points B1 and 
C1 lie on the same side of AD.  Hence A, B1, C1, and D (in that order) form the vertices 
of a convex quadrilateral.  Likewise B, B1, C1, and C form the vertices of a convex 

quadrilateral.  By construction, S.A.S. applies to show ADC  ≅≅≅≅   BCC1.  It follows
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