Math 133 Spring 2022 L16AA

ALTERNATE PROOF FOR THEOREM 11

More precisely, this is for the second part of the result: If there is a right triangle whose angle sum is 180° , then a rectangle exists.

Let $\triangle ABC$ be the triangle in question, where $|\angle ABC| = 90^{\circ}$. Next, let E be a point on the same side of BC as A such that $|\angle ECB| = 90^{\circ}$, and choose $D \in (CE$ so that |CD| = |AB|. By Proposition 5 in Lecture 15, the points A, B, C, D (in that order) form the vertices of a convex quadrilateral, and by construction this quadrilateral is a Saccheri quadrilateral with base [BC].

Since the diagonals (AC) and (BD) have a point in common, it follows that A lies in the interior of $\angle DCB$ and consequently

$$90^{\circ} = |\angle DCA| + |\angle ACB|$$
.

On the other hand, since the angle sum of $\triangle ABC$ is 180° we also have $|\angle CAB| + |\angle ACB| = 90^{\circ}$. Combining these equations, we conclude that $|\angle CAB| = |\angle DCA|$. Therefore $\triangle CAB \cong \triangle ACD$ by S.A.S. congruence. The latter shows that $|\angle ADC| = |\angle ABC| = 90^{\circ}$, and therefore we have $AD \perp CD$.

To complete the proof, we must also show that $|\angle DAB| = 90^{\circ}$. Since we have a convex quadrilateral, we know that C lies in the interior of $\angle DAB$. Therefore we have

$$\angle DAB| = |\angle CAB| + |\angle CAD|$$

and by the triangle congruence and assumptions on $\triangle ABC$ we know that

$$|\angle CAD| = |\angle ACB| = 90^{\circ} - |\angle CAB|.$$

Therefore $|\angle DAB| = 90^{\circ}$, so that $AD \perp AB$ and hence the four points A, B, C, D (in that order) form the vertices of a rectangle.

