ALTERNATE PROOF FOR THEOREM 11

More precisely, this is for the second part of the result: If there is a right triangle whose angle sum is 180°, then a rectangle exists.

Let $\triangle A B C$ be the triangle in question, where $|\angle A B C|=90^{\circ}$. Next, let E be a point on the same side of $B C$ as A such that $|\angle E C B|=90^{\circ}$, and choose $D \in(C E$ so that $|C D|=|A B|$. By Proposition 5 in Lecture 15 , the points A, B, C, D (in that order) form the vertices of a convex quadrilateral, and by construction this quadrilateral is a Saccheri quadrilateral with base $[B C]$.

Since the diagonals $(A C)$ and $(B D)$ have a point in common, it follows that A lies in the interior of $\angle D C B$ and consequently

$$
90^{\circ}=|\angle D C A|+|\angle A C B|
$$

On the other hand, since the angle sum of $\triangle A B C$ is 180° we also have $|\angle C A B|+$ $|\angle A C B|=90^{\circ}$. Combining these equations, we conclude that $|\angle C A B|=|\angle D C A|$. Therefore $\triangle C A B \cong \triangle A C D$ by S.A.S. congruence. The latter shows that $|\angle A D C|=|\angle A B C|=$ 90°, and therefore we have $A D \perp C D$.

To complete the proof, we must also show that $|\angle D A B|=90^{\circ}$. Since we have a convex quadrilateral, we know that C lies in the interior of $\angle D A B$. Therefore we have

$$
|\angle D A B|=|\angle C A B|+|\angle C A D|
$$

and by the triangle congruence and assumptions on $\triangle A B C$ we know that

$$
|\angle C A D|=|\angle A C B|=90^{\circ}-|\angle C A B|
$$

Therefore $|\angle D A B|=90^{\circ}$, so that $A D \perp A B$ and hence the the four points A, B, C, D (in that order) form the vertices of a rectangle..

