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 4 : Angle defects and related phenomena 

In the previous section we showed that the angle sums of triangles in a neutral plane 
can behave in one of two very distinct ways.  In fact, it turns out that there are essentially 
only two possible neutral planes, one of which is given by Euclidean geometry and the 
other of which does not satisfy any of the  24  properties listed in Section 2.   The 
purpose of this section is to study some of these properties for a non – Euclidean plane.  

Definition.   A neutral plane  , , d, αααα   is said to be  hyperbolic  if Playfair’s Parallel

Postulate does  not  hold.  In other words, 

there is some pair  (L, X), where  L  is a line in    and X is a 

point not on  L, for which there are at least two lines through 
X  which are parallel to  L.   

The study of hyperbolic planes is usually called  HYPERBOLIC GEOMETRY. 

The name “hyperbolic geometry” was given to the subject by F. Klein (1849 – 1925), 
and it refers to some relationships between the subject and other branches of geometry 
which cannot be easily summarized here.   Detailed descriptions may be found in the 
references listed below: 

C. F. Adler,  Modern Geometry: An Integrated First Course (2nd Ed.).  McGraw –
Hill, New York, 1967.  ISBN: 0–070–00421–8. [see Section 8.5.3, pp. 219 – 226]  

A. F. Horadam,  Undergraduate Projective Geometry.  Pergamon Press, New 
York, 1970.  ISBN: 0–080–17479–5. [see pp. 271 – 272] 

H. Levy,  Projective and Related Geometries. Macmillan, New York, 1964.  ISBN: 
0–000–03704–4. [see Chapter V, Section 7] 

A complete and rigorous development of hyperbolic geometry is long and 
ultimately highly nonelementary, and  it requires a significant amount of input 
from trigonometry, transcendental functions and differential and integral calculus. 
We shall discuss one aspect of the subject with close ties to calculus at the end of this 
section, but we shall only give proofs that involve “elementary” concepts and 
techniques. 

In the previous section we showed that the angle sum of a triangle in a neutral plane is 
either always equal to  180°  or always strictly less than  180°.  We shall begin by
showing that the second alternative holds in a hyperbolic plane. 

Theorem 1.  In a hyperbolic plane    there is a triangle  ABC  such that 

∠∠∠∠CAB     ∠∠∠∠ABC      ∠∠∠∠ACB    <  180°. 
By the results of the preceding section, we immediately have several immediate 
consequences. 

Theorem 2.  In a hyperbolic plane  , given an arbitrary triangle ABC we have 

∠∠∠∠CAB     ∠∠∠∠ABC      ∠∠∠∠ACB    <  180°.  
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This follows from the All – or – Nothing Theorem in Section 3, and it has further 
implications for the near – rectangles we have discussed.   

Corollary 3.  In a hyperbolic plane  , suppose that we have a convex quadrilateral 

ABCD such that AB is perpendicular to both AD and BC.

1. If   ABCD  is a  Saccheri  quadrilateral with base  AB  such that  xx
AD      BC ,  then  ∠∠∠∠ADC       ∠∠∠∠BCD    <   90°.

2. If   ABCD is a  Lambert quadrilateral  such that  ∠∠∠∠ABC   
∠∠∠∠BCD       ∠∠∠∠DAB       90°,  then  |∠∠∠∠ADC    <   90°.

In particular, it follows that  there are  NO RECTANGLES  in a  hyperbolic plane  . 

Proof of Corollary 3.   If we split each choice of convex quadrilateral into two triangles 
along the diagonal [AC], then by Theorem 2 we have the following: 

∠∠∠∠CAB      ∠∠∠∠ABC       ∠∠∠∠ACB    <   180° 

∠∠∠∠CAD      ∠∠∠∠ADC       ∠∠∠∠ACD    <   180° 

Since is a convex quadrilateral we know that C lies in the interior or  ∠∠∠∠DAB   and  A  lies 
in the interior of  ∠∠∠∠BCD.  Therefore we have  ∠∠∠∠DAB       ∠∠∠∠DAC      ∠∠∠∠CAB  
and  ∠∠∠∠BCD       ∠∠∠∠ACD      ∠∠∠∠ACB ; if we combine these with the previous
inequalities we obtain the following basic inequality, which is valid for an arbitrary 
convex quadrilateral in a hyperbolic plane: 

∠∠∠∠ABC      ∠∠∠∠BCD      ∠∠∠∠CDA      ∠∠∠∠DAB     

∠∠∠∠CAB     ∠∠∠∠ABC     ∠∠∠∠ACB     ∠∠∠∠CAD     ∠∠∠∠ADC     ∠∠∠∠ACD    <   360° 

To prove the first statement, suppose that  ABCD  is a  Saccheri quadrilateral, so 
that ∠∠∠∠ADC       ∠∠∠∠BCD   by the results of the previous section.  Since  |∠∠∠∠DAB  

 ∠∠∠∠ABC       90°  by Proposition 3.6 , the preceding inequality reduces to  

180°     ∠∠∠∠BCD      ∠∠∠∠CDA       180°     2 ∠∠∠∠BCD    

180°     2 ∠∠∠∠CDA    <   360° 

which implies  ∠∠∠∠ADC       ∠∠∠∠BCD    <   90°. 

To prove the second statement, suppose that  ABCD  is a  Lambert quadrilateral, so 
that  ∠∠∠∠BCD       90°.  Since ∠∠∠∠ABC      ∠∠∠∠DAB       90°, the general

inequality specializes in this case to   270°     ∠∠∠∠CDA    <   360°, which implies the

desired inequality   |∠∠∠∠ADC |  <  90°.  
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Proof of Theorem 1.   In a hyperbolic plane, we know that there is some line  L  and 
some point  A  not on  L  such that there are at least two parallel lines to  L  which 
contain  A. 

Let  C  be the foot of the unique perpendicular from  A  to  L, and let  M  be the unique 
line through  A  which is perpendicular to  AC in the plane of  L  and  A.  Then we know 
that  L  and  M  have no points in common (otherwise there would be two perpendiculars 
to  AC  through some external point).  By the choice of  A  and  L  we know that there is 
a second line  N  through  A  which is disjoint from  L .   

The line  N  contains points  U  and  V  on each side of  AC, and they must satisfy  

U∗A∗V.  Since  N  is not perpendicular to  AC  and  ∠∠∠∠CAU      ∠∠∠∠CAV       180°, 
it follows that one of  ∠∠∠∠CAU ,  ∠∠∠∠CAV   must be less than 90°.  Choose  W  to be

either  U  or  V  so that we have  θθθθ      ∠∠∠∠CAW    <   90° (in the drawing above we

have  W    V).  
The line L also contains points on both sides of AC, so let X be a point of L which is on 
the same side of AC as W.   

CLAIM:  If  G  is a point of  (CX, then there is a point  H  on  (CX  such that  C∗G∗H
and  ∠∠∠∠CHA       ½ ∠∠∠∠CGA .   

To prove the claim, let  H  be the point on  (CX  such that  CH      CG    

GA ; it follows that  C∗G∗H  holds and also that   GH      AG  .   The Isosceles

Triangle Theorem then implies that  |∠∠∠∠GHA      ∠∠∠∠GAH |, and by a corollary to the
Saccheri – Legendre Theorem we also have  ∠∠∠∠CGA     ∠∠∠∠GHA    ∠∠∠∠GAH    
2 ∠∠∠∠GHA     2 ∠∠∠∠CHA ,  where the final equation holds because  ∠∠∠∠GHA      
∠∠∠∠CHA.   This proves the claim. 

Proceeding inductively, we obtain a sequence of points  B0, B1, B2,  …  of points on
(CH  such that  ∠∠∠∠CBk + 1  A       ½ ∠∠∠∠CBk A ,  and it follows that for each  n  we have

∠∠∠∠CBn  A       2 
–

 
n ∠∠∠∠CB0 A .
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If we choose  n  large enough, we can make the right hand side (hence the left hand 

side) of this inequality less than  ½ (90° θθθθ).   Furthermore, we can also choose  n  so
that  

∠∠∠∠ CBn  A    <   θθθθ      ∠∠∠∠CAW  

and it follows that the angle sum for  ABn C  will be

∠∠∠∠CABn      ∠∠∠∠ABn C      ∠∠∠∠ACBn    <    

½ (180° θθθθ)    θθθθ     180°   <   (90° θθθθ)    θθθθ     90°      180°.

Therefore we have constructed a triangle whose angle sum is less than 180°, as
required.  

Definition.   Given ABC in a hyperbolic plane, its angle defect is given by 

δδδδ( ABC)      180°    ∠∠∠∠CAB      ∠∠∠∠ABC     ∠∠∠∠ACB .
By Theorem 2,  in a hyperbolic plane the angle defect of  ABC  is a positive real 
number which is always strictly between  0°  and  180°.   

The Hyperbolic Angle – Angle – Angle Congruence Theorem 

We have already seen that in spherical geometry there is a complementary notion of 
angle excess, and the area of a spherical triangle is proportional to its angle excess.  
There is a similar phenomenon in hyperbolic geometry:  For any geometrically 
reasonable theory of area in hyperbolic geometry, the angle of a triangle is 
proportional to its angular defect.   This is worked out completely in the book by 
Moïse.  However, for our purposes we only need the following property which suggests 
that the angle defect behaves like an area function.  

Proposition 4.   (Additivity property of angle defects)   Suppose that we are given 
ABC  and that  D is a point on  (BC) .  Then we have

δδδδ( ABC)      δδδδ( ABD)    δδδδ( ADC) . 

Proof.    If we add the defects of the triangles we obtain the following equation: 

δδδδ( ABD)    δδδδ( ADC)      180°    ∠∠∠∠DAB      ∠∠∠∠ABD      ∠∠∠∠ADB    

180°    ∠∠∠∠CAD      ∠∠∠∠ADC     ∠∠∠∠ACD

By the Supplement Postulate for angle measure we know that  

∠∠∠∠ADB     ∠∠∠∠ADC      180°
by the Additivity Postulate we know that  
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∠∠∠∠BAC      ∠∠∠∠BAD     ∠∠∠∠DAC  

and by the hypotheses we also know that  ∠∠∠∠ABD     ∠∠∠∠ABC  and  ∠∠∠∠ACD     ∠∠∠∠ACB . 
If we substitute all these into the right hand side of the equation for the defect sum 
δδδδ( ABD)    δδδδ( ADC),  we see that this right hand side reduces to

180°    ∠∠∠∠CAB      ∠∠∠∠ABC     ∠∠∠∠ACB  

which is the angle defect for  ABC.  

The next result yields a striking conclusion in hyperbolic geometry, which shows that 
the latter does not have a similarity theory comparable to that of Euclidean 
geometry. 

Theorem 5. (Hyperbolic A.A.A. or Angle – Angle – Angle Congruence Theorem)  
Suppose we have ordered triples  (A, B, C)  and  (D, E, F)  of noncollinear points such 
that the triangles  ABC  and  DEF  satisfy  ∠∠∠∠CAB     ∠∠∠∠FDE  , �

��

� ∠∠∠∠ABC      

∠∠∠∠DEF ,�
��

�and  ∠∠∠∠ACB      ∠∠∠∠DFE .�
��

� Then we have  ABC   ≅≅≅≅   DEF. 

Proof.   If at least one of the statements BC      EF  ,�
��

� AB      DE  ,  or AC  

   DF   is true, then by  A.S.A.  we have  ABC   ≅≅≅≅   DEF.  Therefore it is only
necessary to consider possible situations in which all three of these statements are 
false.  This means that in each expression, one term is less than the other.  There are 
eight possibilities for the directions of the inequalities, and these are summarized in the 
table below. 

CASE |AB| ?? |DE| |AC| ?? |DF| |BC| ?? |EF|
000 AB   <  DE AC   <  DF BC   <  EF

001 AB   <  DE AC   <  DF BC   >  EF

010 AB   <  DE AC   >  DF BC   <  EF

011 AB   <  DE AC   >  DF  BC   >  EF

100 AB   >  DE AC   <  DF BC   <  EF

101 AB   >  DE AC   <  DF BC   >  EF

110 AB   >  DE AC   >  DF BC   <  EF

111 AB   >  DE AC   >  DF BC   >  EF

Reversing the roles of the two triangles if necessary, we may assume that at least two of 
the sides of  ABC  are shorter than the corresponding sides of  DEF.  Also, if we 
consistently reorder  { A, B, C }  and  { D, E, F }  in a suitable manner, then we may also 
arrange things so that  AB   <  DE    and  AC   <  DF .  Therefore, if we take points

G  and  H  on the respective open rays  (BA  and  (BC  such that  AG     DE   and

AH     DF  ,  then by  S.A.S.  we have  AGH   ≅≅≅≅   DEF.

________________________________________

Lecture 

16 ends 

here.

This should be 
�

.
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By hypothesis and construction we know that the angular defects of these triangles 
satisfy  δδδδ( AGH)      δδδδ( DEF)      δδδδ( ABC).  We shall now derive a
contradiction using the additivity property of angle defects obtained previously.  The 
distance inequalities in the preceding paragraph imply the betweenness statements 

A∗B∗G  and  A∗C∗H,  which in turn yield the following defect equations:

δδδδ( AGH)      δδδδ( AGC)    δδδδ( GCH)

δδδδ( AGC)      δδδδ( ABC)    δδδδ( BGC)
If we combine these with previous observations and the positivity of the angle defect we 
obtain  

    δδδδ( ABC)  <   δδδδ( ABC)    δδδδ( BGC)    δδδδ( GCH)   

δδδδ( AGH)      δδδδ( DEF)

which contradicts the previously established equation  δδδδ( DEF)    δδδδ( ABC).  The
source of this contradiction is our assumption that the corresponding sides of the two 
triangles do not have equal lengths, and therefore this assumption must be false.  As 

noted at the start of the proof, this implies  ABC   ≅≅≅≅   DEF.

One immediate consequence of Theorem  6  is that in hyperbolic geometry, two 
triangles cannot be similar in the usual sense unless they are congruent.  In 
particular, this means that we cannot magnify or shrink a figure in hyperbolic geometry 
without distortions.   This is disappointing in many respects, but if we remember that 
angle defects are supposed to behave like area functions then this is not surprising; we 
expect that two similar but noncongruent figures will have different areas, and in 
hyperbolic (just as in spherical !) geometry this simply cannot happen. 

The Strong Hyperbolic Parallelism Property 

The negation of Playfair’s Postulate is that there is some line and some external point 
for which parallels are not unique.  It is natural to ask if there are neutral geometries in 
which unique parallels exist for  some but  not  all  pairs (L, A) where  L  is a line and 
A  is an external point.   The next result implies that no such neutral geometries exist. 

Theorem 7.  Suppose we have a neutral plane    such that for  some  line  L  and 

some external point   A  there is a unique parallel to  L  through  A   Then there is a 

rectangle in   


