
Math 133
Fall 2021

SOLUTIONS FOR WEEK 08 EXERCISES

For these exercises assume that all points lie in a plane which satisfies the axioms for neutral
geometry.

1. Follow the hint. We have k/h > 0, so by density of the rationals there is a rational number
m/n such that m,n > 0 and 0 < m/n < k/h. But then we also have 0 < 1/n ≤ m/n < k/h,
and these inequalities yield h/n < k. Since n < 2n for all positive integers n, it follows that
0 < h/2n < h/n < k, as stated in the exercise.

2. Let L be a line, and take points A, B ∈ L such that |AB| = q. Let X be a point which
does not lie on L, and consider the plane P determined by L and X. By the Protractor Postulate
there exist points U and V on the same side of L as X (in P) such that UA ⊥ AB and V B ⊥ AB.
The Ruler Postulate then yields points D ∈ (AU and C ∈ (BV such that |AD| = |BC| = p, and
therefore Proposition 3.5 implies that A, B, C, D determine the vertices of a convex quadrilateral;
by construction it is a Saccheri quadrilateral.

3. By SAS we have 4DAB ∼= 4CBA, so that the diagonals satisfy |BD| = |AC|. Therefore by
SSS we have 4CDA ∼= 4DCB, and this implies |6 CDA| = | 6 DCB|.

4. Let X and Y be the midpoints of [AB] and [CD] respectively. Then we have 4DAX ∼=
4CBX by SAS, so that |XD| = |XC|, so that XY is the perpendicular bisector of [CD].

Similarly, we have 4ADY ∼= 4BCY by SAS (this requires the previous exercise!), and therefore
|Y A| = |Y B|, so that XY is the perpendicular bisector of [AB]. Therefore XY is perpendicular to
both AB and CD.

5. By Exercise 3 it suffices to show that there is a right angle at D (because that result will
imply there is also a right angle at C). Since the summit and base have equal length, by SSS we
must have 4ADC ∼= 4CBA, so that | 6 ADC| = | 6 CBA| = 90◦.
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6. The hypotheses imply that |AB| = |EF | and |AD| = |BC| = |EH| = |FG|. By SAS we
have ∆DAB ∼= ∆HEF , and hence we also have |BD| = |FH| and | 6 DBA| = | 6 HFE|. Since the
♦ABCD and ♦EFGH are Saccheri (hence convex) quadrilaterals, we know that B ∈ Int 6 ABC
and H ∈ Int 6 EFG. By additivity of angle measure, we then obtain

| 6 DBC| + 90◦ − |6 DBA| = 90◦ − |6 HFE| = | 6 HFG| .

Now we can use SAS to conclude that ∆DBC ∼= ∆HFG, which implies that |CD| = |GH| — in
other words, the summits have equal length — and | 6 DCB| = |6 HGF |. Since the summit angles of
a Saccheri quadrilateral have equal measures, it also follows that | 6 ADC| = | 6 DCB| = |6 HGF | =
|6 GHE|, completing the proof.

7. If we can prove the result with one of the two possible hypotheses on equal lengths, then
the other will follow by interchanging the roles of the vertices, so we might as well assume that
|AB| = |EF |.

By SAS we have 4ABC ∼= 4EFG, and hence we also have |AC| = |EG|, |6 CAB| = |6 GEF |,
and | 6 ACB| = |6 EGF |. Since a Lambert quadrilateral is automatically a convex quadrilateral, it
follows that C ∈ Int 6 DAB and G ∈ Int 6 HEF ; therefore by the additivity of angle measure we
have

| 6 DAC| + 90◦ − |6 CAB| = 90◦ − |6 GEF | = |6 GEH| .

Similarly, we have A ∈ Int 6 BCD and E ∈ Int 6 FGH, so that

| 6 ACD| + 90◦ − |6 ACB| = 90◦ − |6 EGF | = |6 EGH| .

Combining these, we see that 4DAC ∼= 4HEG by ASA, so that |CD| = |GH|, |AD| = |EH| and
|6 ADC| = |6 EHG|, completing the proof.

8. Following the hint, we begin by showing that it is enough to show that |AD| ≤ |BC|. —- If
we know this, then we can conclude that |AB| ≤ |CD| by reversing the roles of A and C in the
discussion which follows.

We know there is a point E ∈ (AB such that |AE| = 2 · |AB|, and since |AB| < |AE| it follows
that A ∗B ∗ E. Let [EX be the unique ray such that EX ⊥ AB = AE and (EX lies on the same
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side of AB = AE as D, and choose F ∈ (EX so that |EF | = |AD|. Then the points A, E, F, D
(in that order) form the vertices of a Saccheri quadrilateral with base [AE].

Let G be the midpoint of [DF ]. We claim that G = C. By Exercise 4 we know that BG is
perpendicular to both AB and DF . Since BC is also perpendicular to AB it follows that BC = BG.
Also, since both CD and GD are perpendicular BC = BG and pass through D , it follows that
CD = GD. Finally, since CD meets BC in C and GD meets BG in G, it follows that G and C
must be the same point.

By the preceding paragraph we have |DF | = 2 · |CD|. By Theorem 10.3.4 in Moise (pp.
152–153), we have |AE| ≤ |FD|, and if we combine these with the defining condition for E we have

2 · |AB| = |AE| ≤ |DF | = 2 · |CD|

and if we divide these inequalities by 2 we obtain the desired relationship |AB| ≤ |CD|.

9. As in the preceding exercise, it is enough to prove that the quadrilateral is a rectangle if
|AB| = |CD|.

It is fairly straightforward to give a proof of this statement which does not involve the con-
struction of the preceding exercise by an argument similar to that for Exercise 7, but there is a
very short proof using the Saccheri quadrilateral given above: If we have |AB| = |CD|, then it
follows that

|AE| = 2 · |AB| = 2 · |CD| = |DF |

and hence the auxiliary Saccheri quadrilateral is a rectangle. But this means that 6 ADC = 6 ADF
is a right angle, which in turn implies that the original Lambert quadrilateral is also a rectangle.
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10. By Exercise 2 we know that there is a Saccheri quadrilateral with vertices A, E, F, D (in
that order) and base [AE] such that |AE| = 2q and |AD| = p.

If B and C are the midpoints of [AE] and [DF ] respectively, then we know that BC is perpendicular
to both AE and DF , and hence the points A, B, C, D form the vertices of a Lambert quadrilateral
with right angles at A, B, C. By construction we have |AD| = p and |AB| = 1

2 · |AE| = q.
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