SOLUTIONS FOR WEEK 08 EXERCISES

For these exercises assume that all points lie in a plane which satisfies the axioms for neutral geometry.

1. Follow the hint. We have $k / h>0$, so by density of the rationals there is a rational number m / n such that $m, n>0$ and $0<m / n<k / h$. But then we also have $0<1 / n \leq m / n<k / h$, and these inequalities yield $h / n<k$. Since $n<2^{n}$ for all positive integers n, it follows that $0<h / 2^{n}<h / n<k$, as stated in the exercise. -
2. Let L be a line, and take points $A, B \in L$ such that $|A B|=q$. Let X be a point which does not lie on L, and consider the plane \mathcal{P} determined by L and X. By the Protractor Postulate there exist points U and V on the same side of L as X (in \mathcal{P}) such that $U A \perp A B$ and $V B \perp A B$. The Ruler Postulate then yields points $D \in(A U$ and $C \in(B V$ such that $|A D|=|B C|=p$, and therefore Proposition 3.5 implies that A, B, C, D determine the vertices of a convex quadrilateral; by construction it is a Saccheri quadrilateral.-

3. By SAS we have $\triangle D A B \cong \triangle C B A$, so that the diagonals satisfy $|B D|=|A C|$. Therefore by SSS we have $\triangle C D A \cong \triangle D C B$, and this implies $|\angle C D A|=|\angle D C B|$.
4. Let X and Y be the midpoints of $[A B]$ and $[C D]$ respectively. Then we have $\triangle D A X \cong$ $\triangle C B X$ by SAS , so that $|X D|=|X C|$, so that $X Y$ is the perpendicular bisector of $[C D]$.

Similarly, we have $\triangle A D Y \cong \triangle B C Y$ by SAS (this requires the previous exercise!), and therefore $|Y A|=|Y B|$, so that $X Y$ is the perpendicular bisector of $[A B]$. Therefore $X Y$ is perpendicular to both $A B$ and $C D$.
5. By Exercise 3 it suffices to show that there is a right angle at D (because that result will imply there is also a right angle at C). Since the summit and base have equal length, by SSS we must have $\triangle A D C \cong \triangle C B A$, so that $|\angle A D C|=|\angle C B A|=90^{\circ}$. .
6. The hypotheses imply that $|A B|=|E F|$ and $|A D|=|B C|=|E H|=|F G|$. By SAS we have $\triangle D A B \cong \triangle H E F$, and hence we also have $|B D|=|F H|$ and $|\angle D B A|=|\angle H F E|$. Since the $\diamond A B C D$ and $\diamond E F G H$ are Saccheri (hence convex) quadrilaterals, we know that $B \in \operatorname{Int} \angle A B C$ and $H \in \operatorname{Int} \angle E F G$. By additivity of angle measure, we then obtain

$$
|\angle D B C|+90^{\circ}-|\angle D B A|=90^{\circ}-|\angle H F E|=|\angle H F G|
$$

Now we can use SAS to conclude that $\triangle D B C \cong \triangle H F G$, which implies that $|C D|=|G H|-$ in other words, the summits have equal length - and $|\angle D C B|=|\angle H G F|$. Since the summit angles of a Saccheri quadrilateral have equal measures, it also follows that $|\angle A D C|=|\angle D C B|=|\angle H G F|=$ $|\angle G H E|$, completing the proof.
7. If we can prove the result with one of the two possible hypotheses on equal lengths, then the other will follow by interchanging the roles of the vertices, so we might as well assume that $|A B|=|E F|$.

By SAS we have $\triangle A B C \cong \triangle E F G$, and hence we also have $|A C|=|E G|,|\angle C A B|=|\angle G E F|$, and $|\angle A C B|=|\angle E G F|$. Since a Lambert quadrilateral is automatically a convex quadrilateral, it follows that $C \in \operatorname{Int} \angle D A B$ and $G \in \operatorname{Int} \angle H E F$; therefore by the additivity of angle measure we have

$$
|\angle D A C|+90^{\circ}-|\angle C A B|=90^{\circ}-|\angle G E F|=|\angle G E H|
$$

Similarly, we have $A \in \operatorname{Int} \angle B C D$ and $E \in \operatorname{Int} \angle F G H$, so that

$$
|\angle A C D|+90^{\circ}-|\angle A C B|=90^{\circ}-|\angle E G F|=|\angle E G H|
$$

Combining these, we see that $\triangle D A C \cong \triangle H E G$ by ASA, so that $|C D|=|G H|,|A D|=|E H|$ and $|\angle A D C|=|\angle E H G|$, completing the proof.■
8. Following the hint, we begin by showing that it is enough to show that $|A D| \leq|B C|$. - If we know this, then we can conclude that $|A B| \leq|C D|$ by reversing the roles of A and C in the discussion which follows.

We know there is a point $E \in(A B$ such that $|A E|=2 \cdot|A B|$, and since $|A B|<|A E|$ it follows that $A * B * E$. Let $[E X$ be the unique ray such that $E X \perp A B=A E$ and ($E X$ lies on the same
side of $A B=A E$ as D, and choose $F \in(E X$ so that $|E F|=|A D|$. Then the points A, E, F, D (in that order) form the vertices of a Saccheri quadrilateral with base $[A E]$.

Let G be the midpoint of $[D F]$. We claim that $G=C$. By Exercise 4 we know that $B G$ is perpendicular to both $A B$ and $D F$. Since $B C$ is also perpendicular to $A B$ it follows that $B C=B G$. Also, since both $C D$ and $G D$ are perpendicular $B C=B G$ and pass through D, it follows that $C D=G D$. Finally, since $C D$ meets $B C$ in C and $G D$ meets $B G$ in G, it follows that G and C must be the same point.

By the preceding paragraph we have $|D F|=2 \cdot|C D|$. By Theorem 10.3.4 in Moise (pp. $152-153$), we have $|A E| \leq|F D|$, and if we combine these with the defining condition for E we have

$$
2 \cdot|A B|=|A E| \leq|D F|=2 \cdot|C D|
$$

and if we divide these inequalities by 2 we obtain the desired relationship $|A B| \leq|C D|$..
9. As in the preceding exercise, it is enough to prove that the quadrilateral is a rectangle if $|A B|=|C D|$.

It is fairly straightforward to give a proof of this statement which does not involve the construction of the preceding exercise by an argument similar to that for Exercise 7, but there is a very short proof using the Saccheri quadrilateral given above: If we have $|A B|=|C D|$, then it follows that

$$
|A E|=2 \cdot|A B|=2 \cdot|C D|=|D F|
$$

and hence the auxiliary Saccheri quadrilateral is a rectangle. But this means that $\angle A D C=\angle A D F$ is a right angle, which in turn implies that the original Lambert quadrilateral is also a rectangle..
10. By Exercise 2 we know that there is a Saccheri quadrilateral with vertices A, E, F, D (in that order) and base $[A E]$ such that $|A E|=2 q$ and $|A D|=p$.

If B and C are the midpoints of $[A E]$ and $[D F]$ respectively, then we know that $B C$ is perpendicular to both $A E$ and $D F$, and hence the points A, B, C, D form the vertices of a Lambert quadrilateral with right angles at A, B, C. By construction we have $|A D|=p$ and $|A B|=\frac{1}{2} \cdot|A E|=q \cdot$.

