Math 133
Fall 2021

SOLUTIONS FOR “MORE WEEK 08 EXERCISES”

11.  (a) The midpoint conditions imply the following equations:

|AE| = |EC| = |AC|/2 = |A'C'|)2 = = |E'C'| = |A'F/|
|AF| = |FC| = |AB|/2 = |A'B'|/2 = = |F'B'| = |A'F/|
BD| = |DC| = |BC|j2 = |B'C|/2 = = |D'C'| = |B'D|

Furthermore, we are given that [/CAB = /EAF| = |/C'A'B' = /E'A'F'|, |LABC = /FBD| =
ILA'B'C" = |/F'B'D'|, and |LACB = /ECD| = |/A'C"B' = /E'C'D'|. so by SAS we have the
congruences AEAF = AE'A'F', AFBD < AF'B'D’', and AECD =2 AE'C'D' =

(a) The triangle congruences in (a) imply that |[EF| = |E'F’|, |[DF| = |D'F’| and |DE| =
|D’E’|. Therefore we also have ADEF = AD'E'F' by SSS.a

(c) Consider AABC and AAFFE first. By SAS similarity we have AAFE ~ AABC with ratio
of similitude equal to 5. Therefore |[EF| = |BC|/2. Similarly |E'F’| = |B'C’|/2. Interchanging the
roles of A, B,C and D, E, F' (and the corresponding primed vertices) in a compatible manner con-
sistent with the midpoint notation, we likewise concludde that |DF| = |AC|/2, |D'F'| = |A’C"|/2,
|DE| = |AB|/2 and |D'E’| = |A’B’|/2. Combining this with AABC = AA'B’C’, by SSS congru-
ence we obtain

ANAEF = ANFDB = ACED = ADFE =
NA'E'F = AF'D'B" =2 NC'E'D' = AD'F'E’

which is what we wanted to prove; in subsequent exercises we shall see that the analogous result
in hyperbolic geometry is false.n

12.  (a) Suppose first that we have a Saccheri quadrilateral $ ABCD in a hyperbolic plane with
base [AB]. By a theorem in Section 16.3 of Moise, we know that |AB| < |C'D|, and furthermore by
a previous exercise we know that if the Saccheri quadrilateral is a rectangle if equality holds. Since
rectangles do not exist in a hyperbolic plane, we must have the strict inequality |AB| < |C'D|.

Now suppose that that we have a Lambert quadrilateral $ ABCD in a hyperbolic plane with
right angles at A, B, C. By Exercise V.3.9 and V.3.10 we know that d(A4, B) < d(C,D) and
d(A,D) < d(B,C), and if either d(A,B) = d(C,D) or d(A,D) = d(B,C) then the Lambert
quadrilateral is a rectangle. As above, since rectangles do not exist in a hyperbolic plane, we must
have the strict inequalities d(A, B) < d(C, D) and d(A,D) < d(B,C).n

(b) This follows fairly directly from results in Section 4 of the notes. By an exercise from
the preceding section, we know that the lines containing the summit and base of the Saccheri
quadrilateral have a common perpendicular, and the theorem from the notes says that the shortest
distance from a point on one line to the other is realized at the points where the two parallel
lines meet this common perpendicular. Since the lines containing the lateral sides of a Saccheri
quadrilateral are perpendicular to the line containing the base, it follows that the length of a lateral
side must be greater than the length of the segment joining the midpoints of the summit and base,
for the line joining these two points is the common perpendicular.s
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(¢) In a Saccheri quadrilateral both summit angles are acute and have the same angular mea-
sure. The first assertion follows because the angle sum of a convex quadrilateral in hyperbolic
geometry is always less than 360°. In contrast, a Lambert quadrilateral has three right angles at
the vertices, and only the remaining vertex angle can be acute.m

13.  If we split a triangle AABC into two triangles by a segment [BD] where D € (AC), then
we have

S(AABC) = §(AABD) + 6(AADC)

and since all numbers in sight are positive it follows that at least one of the numbers on the right
hand side is less than or equal to 36(AABC).
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The preceding argument shows that if we are given AABC then there is some triangle A X;1Y; 2
such that 6(AX1Y1Z;) < 36(AABC). Repeating this process, for each n we can construct a
triangle AX,,Y,,Z,, such that 6(AX,,Y,Z,) < §(AABC)/2". One can now use the Archimedian
Property to show there is some n for which the right hand side is less than h.m

14. (a) Asin the proof of the Hyperbolic AAA Congruence Theorem we know that the defects
satisfy 0(AADE) < 6(AABC). If we apply the Isosceles Triangle Theorem and the definition of
defect to both triangles we find that 180 — |/BAC| — 2|/ADE| = 6(AADE) < §(AABC) =
180 — |£BAC| — 2|/ ABC and from this point one can use standard manipulations with inequalities
to prove that [LADE| > |/ABC|.=

(b) Since equilateral triangles are equiangular, we know that |/BAC| = [LABC| = |/BCA]|;
let us denote this common value by £. Since D, E and F' are midpoints of the sides of an equilateral
triangle, we know that |[AF| = |FB| = |BD| = |DC| = |CE| = |EA| and therefore
we have AAEF =2 ABFD =2 ACDFE by SAS.
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.All three of these smaller triangles are isosceles, so that we also have
|/AEF| = |/AFE| = |/BFD| = |/BDF| = |/CDE| = |/CED|

and we shall denote the common value by 7.
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The triangle congruences also imply
[EF| = |FD| = |DE|

and hence ADFEF is also an equilateral triangle. Thus it is also equiangular, so let ¢ be the measure
of the three vertex angles. The second relationship to proved in the exercise then translates to
showing that ¢ > €.

Since we are working in hyperbolic geometry we know that the angle sum of, say, AAEF is
less than 180 degrees, and if we substitute the values £ and 7 into this inequality we find that
&+ 2n < 180.

A picture suggests that we should also have ¢ + 2n = 180, but we need to prove this. A key
step in doing this is to show that E lies in the interior of ZDF A. To prove this, first observe that
the betweenness relations C'x E x A and C x D * B imply that C, D and E all lie on the same side
of AB. Next, the betweenness relations A * F'« B and C % D * B imply that B lies on the side of
FD opposite both C' and A, so that A and C' lie on the same side of DF. Finally, E € (AC) now
implies that A and E must lie on the same side of DF', completing the requirements for E to lie in
the interior of /DF A.

The preceding paragraph implies that |/DFA| = |/DFE|+|/EFA| = ¢+n. Since Ax F x B
holds, we also have
180 = |/DFA| + |[/DFB| = ¢ +n+1n = ¢ + 29
which was the claim at the beginning of the preceding paragraph. It now follows that

E+2n < 180 = ¢ + 2.9

which implies £ < 7, proving the inequality stated in the second assertion of the exercise.

Finally, we need to show that the isosceles triangle AAEF is not an equilateral triangle.
However, the preceding exercise implies that

ILEFA| > |/ABC|

and since the right hand side is equal to |/CAB = /EAF, we can use “the larger angle is opposite
the longer side” to conclude that |AE| < |[FA|=

15.  We know that there is a ray [DX such that (DX lies on the same side of AB as C' and
|/EDA| =|/CBA|. Therays [DX and [BC cannot have a point in common, for if they met at some
point Y then the Exterior Angle Theorem would imply |[/EDA| > |/CBA| and by construction
these two numbers are equal.

By Pasch’s Theorem the line DX must have a point in common with either [BC] or (AC).
Since [DX and [BC have no points in common by the preceding paragraph, it follows that there
must be a point £ € (AC)N DX. Since A x E C' is true, it follows that F and C lie on the same
side of AB, so that [DE = [DX. c



Since A * E x C'is true, it follows that £ and C lie on the same side of AB, so that [DE = [DX.
Furthermore, since E € (AC) and D € (AB), the angle defects of AABC and AADE satisfy

S(AABC) = 6(AADE) + S(AEDC) + 6(ADBC)
so that 6(AADFE) < §(AABC'). On the other hand, by construction we have
J(AABC) — 6(AADE) = |LAED| — |LACB]|

and since the left hand side is positive it follows that |/ AED| > |/ ACB|, which is what we wanted
to prove.m

16.  Suppose that the ray [AC bisects ZDAB. Then we have |/CAD| = |[/DAB| = 45°.
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On the other hand, since AABC is an isosceles triangle with a right angle at B, it will follow that
|/ ACB| = 45°. In particular, this means that the angle defect of AABC' is zero. This cannot
happen in a hyperbolic plane, and therefore the ray [AC' cannot bisect ZDAB.»

17. Follow the hint, so that B is a point not on a line L such that there are at least two parallel
lines to L through B. One of the lines can be constructed by dropping a perpendicular from B to
L whose foot we shall call Y, and then taking a line M which is perpendicular to BY and passes
through B. Let N be a second line through B which is parallel to L.
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Since L and M are parallel, all points of L lie on the same side of M. Since N contains points on
both sides of M, it follows that there is some point A which lie on N and also on the same side
of M as L. Note that A ¢ BY, because N N BY = {B} and B € M. Since M contains points on
both sides of BY', there is also a point C' € M which lies on the side of BY which does not contain
A (hence A and C' lie on opposite sides of BY).

We claim that L is contained in the interior of /ABC. The first step is to show that Y lies in
the interior of this angle. By construction we know that Y € L and since L and A lie on the same
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side of M, it follows that Y and A lie on the same side of M = BC. On the other hand, since A
and C lie on opposite sides of BY we know there is a point Z € (AC) N BY. It follows that A and
Z lie on the same side of BC = M, and since A and Y also lie on the same side of M it follows
that (BY = (BZ. But this means that C', Z and Y must all lie on the same side of N = AB. Thus
we have shown that Y lies in the interior of ZABC.

Since L does not have any points in common with either M or N, it follows that all points of
L lie on the same side of each line. We have seen that Y € L lies on the same side of M = BC' as
A and on the same side of N = AB as C, and therefore the same must be true for every point of
L. But this means that L is contained in the interior of /ABC.m

(b) The location of the line L is arbitrary, so it is useful to begin by disposing of a special case
first. If L contains the vertex B, then B ¢ Int ABC' and we are done. Assume henceforth that
B¢ L.

We know that the lines AB and BC' are distinct, so at most one of them is parallel to L; let
M be a line in {AB, AC'} which is not parallel to L. Then L must contain a point of AB or AC.
Since both of these lines are disjoint from Int ABC it follows that L must contain a point which is
not in the interior of the angle.m





