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�∠∠∠∠BAC�  �   �∠∠∠∠BAD�  �  �∠∠∠∠DAC� 

and by the hypotheses we also know that  ∠∠∠∠ABD  �   ∠∠∠∠ABC  and  ∠∠∠∠ACD  �   ∠∠∠∠ACB  . 
If we substitute all these into the right hand side of the equation for the defect sum 

δδδδ(����ABD)  �  δδδδ(����ADC),  we see that this right hand side reduces to

180°  �  �∠∠∠∠CAB�  �   �∠∠∠∠ABC�  �  �∠∠∠∠ACB� 

which is the angle defect for  ����ABC.� 

The next result yields a striking conclusion in hyperbolic geometry, which shows that 
the latter does not have a similarity theory comparable to that of Euclidean 
geometry. 

Theorem 5. (Hyperbolic A.A.A. or Angle – Angle – Angle Congruence Theorem)  
Suppose we have ordered triples  (A, B, C)  and  (D, E, F)  of noncollinear points such 

that the triangles  ����ABC  and  ����DEF  satisfy  �∠∠∠∠CAB�  �  �∠∠∠∠FDE� , �����∠∠∠∠ABC�   �  

�∠∠∠∠DEF�,����and  �∠∠∠∠ACB�   �  �∠∠∠∠DFE�.���� Then we have  ����ABC   ≅≅≅≅   ����DEF. 

Proof.   If at least one of the statements �BC�  �   �EF� ,���� �AB�  �   �DE� ,  or �AC� 

�   �DF�  is true, then by  A.S.A.  we have  ����ABC   ≅≅≅≅   ����DEF.  Therefore it is only

necessary to consider possible situations in which all three of these statements are 
false.  This means that in each expression, one term is less than the other.  There are 
eight possibilities for the directions of the inequalities, and these are summarized in the 
table below. 

CASE |AB| ?? |DE| |AC| ?? |DF| |BC| ?? |EF|
000 �AB�  <  �DE� �AC�  <  �DF� �BC�  <  �EF�

001 �AB�  <  �DE� �AC�  <  �DF� �BC�  >  �EF�

010 �AB�  <  �DE� �AC�  >  �DF� �BC�  <  �EF�

011 �AB�  <  �DE� �AC�  >  �DF�  �BC�  >  �EF�

100 �AB�  >  �DE� �AC�  <  �DF� �BC�  <  �EF�

101 �AB�  >  �DE� �AC�  <  �DF� �BC�  >  �EF�

110 �AB�  >  �DE� �AC�  >  �DF� �BC�  <  �EF�

111 �AB�  >  �DE� �AC�  >  �DF� �BC�  >  �EF�

Reversing the roles of the two triangles if necessary, we may assume that at least two of 

the sides of  ����ABC  are shorter than the corresponding sides of  ����DEF.  Also, if we 

consistently reorder  { A, B, C }  and  { D, E, F }  in a suitable manner, then we may also 

arrange things so that  �AB�  <  �DE�   and  �AC�  <  �DF�.  Therefore, if we take points

G  and  H  on the respective open rays  (BA  and  (BC  such that  �AG�  �  �DE�  and

�AH�  �  �DF� ,  then by  S.A.S.  we have  ����AGH   ≅≅≅≅   ����DEF.
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By hypothesis and construction we know that the angular defects of these triangles 

satisfy  δδδδ(����AGH)   �   δδδδ(����DEF)   �   δδδδ(����ABC).  We shall now derive a
contradiction using the additivity property of angle defects obtained previously.  The 
distance inequalities in the preceding paragraph imply the betweenness statements 

A∗B∗G  and  A∗C∗H,  which in turn yield the following defect equations:

δδδδ(����AGH)   �   δδδδ(����AGC)  �  δδδδ(����GCH)

δδδδ(����AGC)   �   δδδδ(����ABC)  �  δδδδ(����BGC)

If we combine these with previous observations and the positivity of the angle defect we 
obtain  

    δδδδ(����ABC)  <   δδδδ(����ABC)  �  δδδδ(����BGC)  �  δδδδ(����GCH)  � 

δδδδ(����AGH)   �   δδδδ(����DEF)

which contradicts the previously established equation  δδδδ(����DEF)  �  δδδδ(����ABC).  The

source of this contradiction is our assumption that the corresponding sides of the two 
triangles do not have equal lengths, and therefore this assumption must be false.  As 

noted at the start of the proof, this implies  ����ABC   ≅≅≅≅   ����DEF.�

One immediate consequence of Theorem  6  is that in hyperbolic geometry, two 
triangles cannot be similar in the usual sense unless they are congruent.  In 
particular, this means that we cannot magnify or shrink a figure in hyperbolic geometry 
without distortions.   This is disappointing in many respects, but if we remember that 
angle defects are supposed to behave like area functions then this is not surprising; we 
expect that two similar but noncongruent figures will have different areas, and in 
hyperbolic (just as in spherical !) geometry this simply cannot happen. 

The Strong Hyperbolic Parallelism Property 

The negation of Playfair’s Postulate is that there is some line and some external point 
for which parallels are not unique.  It is natural to ask if there are neutral geometries in 

which unique parallels exist for  some but  not  all  pairs (L, A) where  L  is a line and 
A  is an external point.   The next result implies that no such neutral geometries exist. 

Theorem 7.  Suppose we have a neutral plane  ����  such that for  some  line  L  and 

some external point   A  there is a unique parallel to  L  through  A�  Then there is a 

rectangle in  ����� 
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Proof.   Let  D  be the foot of the perpendicular from  A  to  L,  and let  C  be a second 
point on  L.  Let  M  be the line in the plane of  L  and  A  such that  M  is perpendicular 
to  L  at  C.  Then  AD  and  M  are lines perpendicular to  L  and meet the latter at 
different points, so that  AD  and  M  are parallel.  Next let  B  be the foot of the 
perpendicular to  M  from the external point  A.  The lines  AB  and  L  are distinct since  
A  does not lie on  L,  and since they are both perpendicular to  M  it follows that  AB  
and  L  are also parallel.  Since we have  AB || CD  and  AD || BC,  it follows that  A,  B, 
C,  D  are the vertices of a convex quadrilateral. 

If   N  is the perpendicular to   AD  through the point   A  in the plane of  L  and  A, then 
we know that  N  is also parallel to  L.  Therefore the uniqueness of parallels to  L  
through  A  implies that  N  must be equal to the line  AB  constructed in the previous 
paragraph; thus we know that  AB  is perpendicular to  AD, and therefore it follows that 
the convex quadrilateral  �ABCD  is a rectangle.�  

Corollary 8.  If  ����  is a neutral plane such that for some line   L  and some external 

point   A  there is a unique parallel to  L  through  A� then Playfair’s Postulate is true in 

����� 

Proof.    By the theorem and the results of the previous section, we know that the angle 

sum for every triangle in  ����  is equal to  180°.  On the other hand, if Playfair’s Postulate 

does not hold in  �����  then by Theorem 2 we know that the angle sum for every triangle is 

less than  180°.  Therefore Playfair’s Postulate must hold in  ����;  in other words, for

every line  M  and external point  B  there is a unique parallel to  M  through  B.� 

Asymptotic parallels 

We have already noted that Playfair’s Postulate is equivalent to the following statement: 

EQUIDISTANCE OF PARALLELS.   Let  L  and  M  be parallel lines in a neutral plane 

����,��let  X  be a point on one of the lines, and let   Y(X)  be the foot of the perpendicular

from  X  to the other line.  Then the distance  ηηηη(X)  from  X  to  Y(X)  is the same for all 
choices of  X. 

It is natural to ask what can be said about the distance function  ηηηη(X)  if  L  and  M  are 

parallel lines in a hyperbolic plane  �������Thus far all of our  explicit  examples of parallel 

lines in hyperbolic planes have been pairs for which there is a common perpendicular 
(although we have not necessarily proven this in all cases).   Our next result describes 

the behavior of  ηηηη(X)  for such pairs of parallel lines. 
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Theorem 9.   Let  L  and  M  be parallel lines in a hyperbolic plane  �������and suppose that 

L  and  M  have a common perpendicular.  Then  L  and  M  have a unique 
perpendicular, and if  C  and  B  are points of  L  and  M  such that  BC  is perpendicular 

to both lines, then the minimum value of   η  η  η  η  is realized at  C  and  B. 

In other words, the distance between two such lines behaves somewhat like the distance 

between two skew lines in Euclidean  3 � space.

Proof.     Let  A  be a second point of  M,  and let  D  be the foot of the perpendicular 
from  A  to  L;  then  D  and  C  are distinct (otherwise  A,  B,  C  are collinear, so that  M 

�   BC,  which is impossible since  M  is parallel to  L  and  C  lies on  L), and the four
points  A,  B,  C,  D   form the vertices of a Lambert quadrilateral with perpendicular 
sides at the vertices  B,  C  and  D.   By the results and exercises on neutral geometry 

from the previous section, we have   |BC|   �   |AC|. 

We claim that in fact  �BC�   <   �AD�.  If equality held, then by  S.A.S.  we would have

����ADC   ≅≅≅≅   ����BCD.  This in turn would imply  �AC�  �  �BD�,  which would further

imply  ����DAB   ≅≅≅≅   ����CBA  by  S.S.S.,  so that  �∠∠∠∠DAB�  �  �∠∠∠∠CBA�  �   90°.  
Thus the Lambert quadrilateral is a rectangle, and since rectangles do not exist in a 
hyperbolic plane we have a contradiction.  Therefore we must have strict inequality as 
claimed, and accordingly the shortest distance between the two lines is the distance 
between  B  and  C  on the common perpendicular.� 

For the remainder of this section we shall merely describe the behavior of the function 

ηηηη(X) which gives the distance between a point X of a line L and a line M which is parallel 
to L.    Further details are in Sections 24.1 – 24.4 of Moise.  A major reason for omitting 
the proofs is that they depend upon the concept of a least upper bound for a nonempty 

set of real numbers which is bounded from above;  this concept is defined and studied 

in Chapter 20 of Moise. 

Not every pair of parallel lines in a hyperbolic plane has a common perpendicular.  
Those pairs which have no common perpendicular are an important class sometimes 

called asymptotic parallels.  For such pairs the function  η η η η  does not reach a minimum 

value but can be made less than an arbitrarily small positive real number (hence the 

lines approach each other asymptotically much as the hyperbola  y  �  1��x
asymptotically approaches the  x � axis defined by  y  �  0).   To describe such lines,

suppose that  (L, A)  is a pair consisting of a line  L  in a hyperbolic plane  ����  and a 

point  A  which is in  ����  but not on  L,  and let  B  be the foot of the perpendicular to from 
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A  to  L.   We then have the following result, which is obtainable by combining several 

separate theorems in Sections  24.1 � 24.4  of Moïse:

Theorem 10.  In a hyperbolic plane  �����  let  L  be a line, let  A be a point not on  L, and 

let  B  be the foot of the perpendicular from  A  to  L.  Let  ΨΨΨΨ  be the set of all points  X  

in  ����  such that  XA  is parallel to  L  (hence  X  cannot lie on  AB) .   Then the set of all 

angle measures �∠∠∠∠XAB�,  taken over all  X  in  ΨΨΨΨ, assumes a  minimum positive 

value  ΠΠΠΠ(A, B)  which is always  strictly less than  90°. � 

In the drawing, the line  M is given by  AC,  where  �∠∠∠∠CAB�  �  ΠΠΠΠ(A, B).  It follows

that  M  is parallel to  L,  and the angle  θθθθ  between  AB  and  M  (measured 

counterclockwise from  AB) is as small as possible (i.e., if the angle is smaller, then the 
line will meet L).  Such a line in hyperbolic geometry is called a  critically parallel  (or  

asymptotically parallel, or  hyperparallel)  line; in some books or papers such lines 
are simply called [hyperbolic] parallel lines.   Similarly, the line  N  that forms the same 

angle  θθθθ     between  AB  and itself but clockwise from  AB  will also be hyperparallel, but 
there can be no others.  All other lines through  A  parallel to  L  form angles greater 

than  θθθθ     with  AB,  and these are called  ultraparallel  (or  disjointly parallel) lines; this 
turns out to be the same as the class of line pairs which have common perpendiculars.  

Since there are an infinite number of possible angles between  θθθθ     and  90  degrees, and 
each value will determine two lines through  A  that are ultraparallel to  L,  it follows that  
we have an infinite number of ultraparallel lines to  L  passing through  A.  

Notation.  The number  ΠΠΠΠ(A, B)  is called the (Lobachevsky) critical angle  or  angle 
of parallelism  for  L  and  A,  and it plays a fundamentally important role in hyperbolic 
geometry.   As suggested above, a great deal of information about this number is 

contained in Moïse; for example, the value only depends upon  d  �  �AB�,  and the

Bolyai – Lobachevsky Formula states that

where  x  �  d�k  for some positive “curvature constant” we shall call  k.  The need to

include the curvature constant  k  reflects the fact that similar triangles are always 
congruent in hyperbolic geometry, and in the  1824  letter from Gauss to Taurinus there 
are some comments about this constant: 

I can solve every problem in it  [non – Euclidean geometry]  with the exception of 
the determination of a constant, which cannot be designated  a priori.   The 
greater one takes this constant, the nearer one comes to Euclidean geometry, 

and when it is chosen infinitely large the two coincide.  ...  If it  [non – Euclidean 
geometry]  were true, there must exist in space a linear magnitude, determined 
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for itself (but unknown to us).  ...  If this non – Euclidean geometry were true, and 
it were possible to compare that constant with such magnitudes as we encounter 
in our measurements on the earth and in the heavens, it could then be 
determined  a posteriori.    Consequently, in jest I have sometimes expressed 
the wish that the Euclidean geometry were not true, since then we would have  a 
priori  an absolute standard of measure. 

Further results on parallel lines in hyperbolic geometry.   One can now state the 
following more complete description of parallelism in hyperbolic geometry:   

Theorem 11.  Let  ����  be a hyperbolic plane.  Given a line  L  in  ����� and a point  A  not 

on  L, there are exactly two lines through  A  which are critically parallel to  L  and 

infinitely many lines through  A  that are ultraparallel to L.���� 

The previously stated asymptotic property of critical parallel lines is given by the next 
result:   

Theorem 12.  Suppose we are given points  L,  A,  B,  X  as above in the hyperbolic 

plane  ����  such that   �∠∠∠∠CAB�  �   ΠΠΠΠ(A, B).   Let  D  be a point of  L  on the same side 

of  AB  as  C.  Given a positive real number  x, let  Y(x)  be the unique point on  (AD  

which satisfies  �AY(x) �   �   x,  and let  σσσσ(x)  be the distance from  Y(x)  to the foot of 

the perpendicular to  AC.   Then the function  σσσσ(x)  is strictly decreasing and the limit of   

σσσσ(x)  as   x  approaches � ∞∞∞∞  is equal to  0.����

In the preceding result the function  σσσσ(x)  is defined for nonnegative values of  x,  and 

one can extend the definition of the function to negative values of x by first taking to be 

the unique point  Y(x)  on the opposite ray   [BD
OP

  such that   �AY(x) �   �   x,  and

then setting  σσσσ(x)  equal to the distance from  Y(x)  to the foot of the perpendicular to  
AC.    We then have the following result:  

Complement 13.  In the setting above, the function  σσσσ(x)   is strictly decreasing for all 

real values of  x,  and the limit of  σσσσ(x)  as  x  approaches � ∞∞∞∞  is equal to  � ∞∞∞∞.� 

The preceding results imply that the graph of the function  σσσσ(x)  resembles the graph of 

the familiar exponential decay function   f (x)  �  e – x.

To complete the discussion, we shall state the corresponding result for ultraparallel lines. 

Proposition 14.   Suppose we are given disjoint lines  AC  and   BD  in the hyperbolic 

plane  ����  such that  AB  is perpendicular to both  AC  and  BD, and assume that   C  

and  D  lie on the same side of  AB.   Let  Y(x)  and  σσσσ(x)  be defined as in the 

preceding results.  Then the function is an even function with   σσσσ(x)   �   σσσσ( � x),  there 
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is a minimum value at   x  �� 0,  the function is strictly increasing for positive values of 

x  and strictly decreasing for negative values, and the limit of  σσσσ(x)  as  x approaches 

� ∞∞∞∞  or  � ∞∞∞∞  is equal to � ∞∞∞∞.� 

In these cases the graph of the function  σσσσ(x)  resembles the graphs of the familiar 

functions   f (x)  �  x 

2
   and (more accurately)   f (x)  �    ½ (e x  �  e – x). 

Proofs of the statements about critical parallels and ultraparallels can be found in many 
books covering hyperbolic geometry.   References for this and other material will be 
given at the beginning of  the next section.  

Appendix to Section 4:  Solved exercises in neutral and 
hyperbolic geometry 

Here are some further examples of problems similar to the exercises for these notes, 
followed by complete solutions.   

PROBLEM 1.   Suppose that we are given a right triangle  ����ABC  in the hyperbolic 

plane ����  with a right angle at  C, and let  E  denote the midpoint of  [AB].  Prove that the 

line L  perpendicular to  AC  through  E  contains a point  D  on (AB) and that  �BD�  is 

greater than  �AD�  �  �CD�. 

SOLUTION.    First of all, by Pasch’s Theorem we know that the perpendicular bisector 
L either contains a point of  [BC]  or of  (AB).  However, since  AC  is perpendicular to 
both BC and L we know that the first option cannot happen, and therefore the line L   

must contain some point  D  of  (AB).   By  S.A.S.  we have  ����DEA   ≅≅≅≅   ����DEC, and

therefore it follows that  �AD�  �  �CD�.   Furthermore, we have �∠∠∠∠DAE�   �  �∠∠∠∠DCE�.����
By the additivity property for angle measurements, we have  

�∠∠∠∠DAE�  �  �∠∠∠∠DCB�    �   �∠∠∠∠DCE�  �  �∠∠∠∠DCB�    �   90° 

and if we combine this with  ∠∠∠∠DAE    �  ∠∠∠∠BAC,   ∠∠∠∠CBD    �  ∠∠∠∠CBA,  and the

hyperbolic angle – sum property 

�∠∠∠∠BAC�  �  �∠∠∠∠CBD�    <   90° 

we see that �∠∠∠∠DBC�  <   �∠∠∠∠BCD�.    Since the larger angle is opposite the longer side,

it follows that  �BD�   >  �CD�   �   �AD�.�   

PROBLEM 2.   In the setting of the previous problem, determine whether  �∠∠∠∠BAC�� is 

less than, equal to or greater than  ½ �∠∠∠∠BDC�.   
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SOLUTION.    We have  �∠∠∠∠ADC�    �   �∠∠∠∠CDE�  �  �∠∠∠∠EDA� because the midpoint  E

lies in the interior of  ∠∠∠∠ADC,  and since  ����DEA   ≅≅≅≅   ����DEC  it also follows that

�∠∠∠∠ADC�    �   2 �∠∠∠∠EDA�.   By the supplement property for angle measures we have

|∠∠∠∠BDC�  �  �∠∠∠∠ADC�   �   180°.   Therefore we also have  ½ �∠∠∠∠BDC�  �  �∠∠∠∠EDA�    

�   90°.  On the other hand, the hyperbolic angle – sum property implies that  |∠∠∠∠BAC�  
�  �∠∠∠∠EDA�    <   90°.  Therefore we have   �∠∠∠∠BAC�  �  �∠∠∠∠EDA�    <   ½ �∠∠∠∠BDC�  � 

�∠∠∠∠EDA� ,  and if we subtract the second term from each side of this inequality we

conclude that  �∠∠∠∠EDA�    <   ½ �∠∠∠∠BDC�.�  

PROBLEM 3.   Suppose that we are given a right triangle  ����ABC  in the neutral plane 

����  with a right angle at  C,  and let  F  denote the midpoint of  [AB].  Show that if F  is 

equidistant from the vertices, then  ����  is Euclidean. 

SOLUTION.    If  F  is equidistant from the vertices, then  EF  is the perpendicular 

bisector of  [AC],  and hence we must have  F  �  D.  However, by the first problem we

know  D  is not equidistant from the vertices if the plane ����  is hyperbolic, and therefore 

����  must be Euclidean.� 

PROBLEM 4.  Suppose that we are given an isosceles triangle  ����ABC  in the neutral 

plane  ����  such that  �AB�   ��  �AC�  and  |∠∠∠∠BAC |    >   60°.  Prove that  �BC�  > 

�AC�   ��  �AB�.  

Discussion.    The drawing depicts an isosceles right triangle.  As such, we know that 
its hypotenuse is longer than either of its legs, and this is in fact true in neutral geometry 
(the base angles, which have equal measure, must be acute, and the longer side is 
opposite the larger angle).  The object of the exercise is to prove a more general result 
which is also true in neutral geometry. 

SOLUTION.    By the Saccheri – Legendre Theorem we have 

�∠∠∠∠BAC�  �  �∠∠∠∠ABC�  �  �∠∠∠∠ACB�    �   �∠∠∠∠BAC�  �  2 �∠∠∠∠ABC�     �   180° 

and since  �∠∠∠∠BAC�    >   60°  it follows that   2 �∠∠∠∠ABC�    <   120°,  and therefore 

�∠∠∠∠ABC�    <   60°.   Since the larger angle of a triangle is opposite the longer side, we

must have  �BC�   >   �AB�,  and the final part of the conclusion follows because the

right hand side is equal to  �AC�.� 

Note.    In Euclidean geometry there is a companion result for isosceles triangles:  If 

�∠∠∠∠BAC�     <    60°, then �BC�   < �AC�  �   �AB�.   —  This is true because the

NOTE:  In hyperbolic geometry 

the same conclusion holds if 

60 (why?), but not so 
in Euclidean geometry (look at 

equilateral triangles).
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angle –  sum property in Euclidean geometry implies that  �∠∠∠∠ABC�    >   60°  if  

�∠∠∠∠BAC�    <   60°.  However, the companion result does not hold in hyperbolic

geometry.  In fact, under these conditions for a fixed value of  �∠∠∠∠BAC�  it is possible to

construct triangles in a hyperbolic plane for which �∠∠∠∠ABC�    �   �∠∠∠∠ACB� is arbitrarily

small.   

PROBLEM 5.   Assume that we are working in a hyperbolic plane�����.����Suppose that we 

are given two side-by-side Saccheri quadrilaterals������ABCD�and �����DCEF�such that 

B∗C∗E������each of  AB, CD, EF is perpendicular to the line of B,C and E,  the points  A, D

and F all lie on the same side of  BC, and��AB�����������CD�����������EF�������Prove that  A, D and

F are noncollinear. 

In contrast, the three points are collinear in Euclidean planes. 

SOLUTION.    Since  AB ⊥⊥⊥⊥ BC,  CD ⊥⊥⊥⊥ BC and  EF ⊥⊥⊥⊥ BE � BC, each of the lines AB, 

CD, EF is parallel to the others.   Now  ����∗����∗����  implies that B and E are on opposite

sides of CD, and since all points of the parallel lines AB and EF lie on the same sides of 
CD, it follows that A and F lie on opposite sides of CD.   It follows that (AF) meets CD at 

some point X	

Assume that A, D and F are collinear.   The points  X and D  are on both AF and CD, so 

it follows that X � D.   Our assumption that �AB�����������CD�����������EF��now implies that A, 

B, E and F (in that order) are the vertices of a Saccheri quadrilateral.  Since the summit 
angles of a Saccheri quadrilateral have equal measures (see the exercises), we have  

�∠∠∠∠DAB�  � �∠∠∠∠DFE�	���But we also have Saccheri quadrilaterals  ����ABCD�and

����DCEF,  and hence the equality of summit angles' measures implies that �∠∠∠∠ADC�  �

�∠∠∠∠DAB�  � �∠∠∠∠ DFE��  � �∠∠∠∠CDF�	���Combining this with  A∗D∗F  and the supplement

postulate, we see that �∠∠∠∠ADC�    �   �∠∠∠∠CDF���   90°.   Therefore the Saccheri

quadrilaterals  ����ABCD�and������DCEF are both rectangles, and this contradicts our 

assumption that the neutral plane  ����  is hyperbolic.  The source of the contradiction is 

our assumption that  A, D and F are collinear,   and thus we conclude that  A, D and F 

must be noncollinear	 �   

Should be 
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Lecture 17 ends here.


