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UPDATED GENERAL INFORMATION — DECEMBER 4, 2013

Information about the final examination. As suggested previously, part of the exam-
ination will cover Sections III.4–III.6 and V.2–V.4 and part will cover earlier material from the
course. As usual in mathematics courses, background from earlier parts of the course is likely to
appear in the problems involving new material; furthermore, the old material may include some
items from the “new” sections that could have easily been covered earlier (but the contents of the
file neutral-proofs1.pdf fits into the “new” rather than the “old” category).

There will be seven problems with point values ranging from 15 to 25 points and a total of
150 points possible. New material will constitute 56 2

3
per cent of the point total, and specifically

material from Unit V will constitute 30 per cent of the point total. Previous statements about
the examination requiring only 90 minutes to complete may be too optimistic, and 2 hours might
be a more realistic estimate. In any case, students have the entire 3 hour period to work on the
examination.

Here is a rough breakdown into the types of questions; some problems on the exam may have
parts of different types.

(1) Statements of definitions, assumptions or results. (35 points)

(2) Proving statements at the level of fairly short proofs in the notes or relatively

uncomplicated homework exercises. In some cases synthetic methods are necessary
or more efficient, and in other cases vector and algebraic methods are probably more
efficient. Reasons may be given less formally if the problem asks for an explanation rather
than a proof, but reasons are still needed for full credit. (90 points)

(3) Deriving simple formulas which illustrate the basic definitions, assumptions

or results. (25 points)

At the beginning of almost every question there will be a statement whether the underlying
geometry is assumed to be Euclidean, hyperbolic or neutral. If there is no such statement, a
proof for any one or more of these cases will be acceptable.

Here are more specific suggestions, including some problems which were considered but either
not included or may appear in a simplified form.

(1) Assume that we are working in a given Euclidean plane. — Suppose that ∆ABC is
isosceles with d(A,B) = d(A,C), and let D be the midpoint of [BC]. Explain why each of
the centroid, circumcenter, orthocenter and incenter lie on the line AD. Describe examples
for which all four of these points lie on [AD], and also describe examples for which at least
one of these points does not lie on the open segment (AD).

(2) Assume that we are working in a given Euclidean plane. — Suppose that we are given
∆ABC, and let D ∈ (AB) be such that ∆ADC ∼ ∆CDB. Prove that ∆ACB is a right
triangle, and furthermore we have ∆ADC ∼ ∆ACB and ∆CDB ∼ ∆ACB.

(3) Assume that we are working in a given Euclidean plane. — Suppose that we are given
∆ABC and ∆DEF , and also assume that there are points G ∈ (BC), H ∈ (EF ) such
that ∆ABG ∼ ∆DEH and ∆AGC ∼ ∆DHF . Prove that ∆ABC ∼ ∆DEF .



(4) Assume that we are working in a given Euclidean plane. — Suppose that we are given
lines L and M with distinct points A,B,C,D,E, F such that the first three points are on
L and satisfy A ∗ B ∗ C, while the second three points are on M and satisfy D ∗ E ∗ F .
Furthermore, assume that the three lines AD, BE and CF are all parallel to each other.
Prove that

d(A,B)

d(B,C)
=

d(D,E)

d(E,F )
.

[Hint: Use vectors and write C = A + t(B − A) and F = D + u(E − D) for suitable
scalars. What do the betweenness relations say about t and u separately? How do the
parallelism conditions imply an equation involving t and u?]

Also consider the following converse problem: If two of the three lines are parallel and the
proportionality equation is valid, prove that the third line is parallel to the other two.

(5) Assume that we are working in a given neutral plane. — Suppose that ∆ABC is isosceles
with d(A,B) = d(A,C), let E and F be the midpoints of [AB] and [AC] respectively,
and suppose that D is the midpoint of [BC]. Prove that the lines AD and EF are
perpendicular. [Note: At some point in the proof it will probably be necessary to show
that AD and EF have a point in common.]

(6) Assume that we are working in a given neutral plane. — Suppose that ∆ABC is given
and that B ∗ C ∗ D is true. Prove that | 6 BCD| ≥ | 6 BAC| + | 6 ABC|. Can we state a
stronger conclusion if the plane is hyperbolic? Give reasons for your answer.

(7) Assume that we are working in a given hyperbolic plane. — Using the exercises for
Section V.3 and results from Section V.4, explain why a Saccheri quadrilateral is never
a Lambert quadrilateral and vice versa. [Hint: In neutral geometry, explain how the
exercises imply that a convex quadrilateral which is both a Saccheri quadrilateral and a
Lambert quadrilateral must be a rectangle.]

(8) Suppose we are given a circle Γ in a neutral plane, and suppose that A,B,C ∈ Γ are
such that neither the line AB nor the line BC contains the center Q of the circle. Prove
that Q lies on the perpendicular bisectors of [AB] and [BC].

(9) Assume that we are working in some Euclidean plane. — Suppose that we are given real
numbers 0 < a < b. Explain why there is a triangle in the plane whose sides have length
a, 2a and b if and only if b < 3a.


