CONCURRENCE AND 3-DIMENSIONAL GEOMETRY

The following theorem appears in many old textbooks on solid geometry.
THEOREM. Let A, B, C be noncollinear points in space. Then the set of all points X such that $d(A, X)=d(B, X)=d(C, X)$ is the line which passes through the circumcenter of $\triangle A B C$ and is perpendicular to the plane of A, B and C.

Proof. If Q is the circumcenter of $\triangle A B C$, then Q is equidistant from all three of its vertices, so we know immediately that Q belongs to the set described in the statement of the theorem. Furthermore, we know that Q is the only point which belongs to both the set and the plane of A, B and C, for any such point must lie on the perpendicular bisectors of the segments $[A B],[B C]$ and $[A C]$ and there is only one such point because the perpendicular bisectors are all distinct.

Suppose first that X lies on the line through Q which is perpendicular to the given plane and $X \neq Q$. Then we have $d(A, Q)=d(B, Q),|\angle X Q A|=90^{\circ}=|\angle X Q B|$, and $d(X, Q)=d(X, Q)$, so that $\triangle X Q A \cong \triangle X Q B$ by SAS. Taking corresponding parts of these triangles, we find that $d(X, A)=d(X, B)$. Switching the roles of B and C in the preceding argument, we also see that $d(X, A)=d(X, C)$.

Conversely, suppose that X is equidistant from A, B and C. If $X=Q$ then we know that X belongs to the set described in the theorem, so suppose now that $X \neq Q$. It will be convenient to use vectors; if we square the defining equations for the set, we obtain the following:

$$
|X-A|^{2}=|X-B|^{2}=|X-C|^{2}
$$

If we expand the three expressions in this pair of equations and subtract $|X|^{2}$ from each expression, we obtain the equations

$$
|A|^{2}-2\langle A, X\rangle=|B|^{2}-2\langle B, X\rangle=|C|^{2}-2\langle C, X\rangle .
$$

Since Q is equidistant from A, B and C we have a similar pair of equations in which X is replaced by Q, and if we subtract the equations involving Q from the equations involving X we obtain a system of equations involving $X-Q$:

$$
-2\langle A, Q-X\rangle=-2\langle B, Q-X\rangle=-2\langle C, Q-X\rangle
$$

Obviously we can cancel the -2 factors, and if we subtract the first expression from the first and third we obtain yet another set of equations:

$$
\langle B-A, Q-X\rangle=0, \quad\langle C-A, Q-X\rangle=0
$$

Therefore the normal direction to the plane $A B C$ is given by the line $Q X$, and this means that $Q X$ must be perpendicular to that plane.

