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CONCURRENCE AND 3–DIMENSIONAL GEOMETRY

The following theorem appears in many old textbooks on solid geometry.

THEOREM. Let A,B,C be noncollinear points in space. Then the set of all points X such that

d(A,X) = d(B,X) = d(C,X) is the line which passes through the circumcenter of ∆ABC and is

perpendicular to the plane of A, B and C.

Proof. If Q is the circumcenter of ∆ABC, then Q is equidistant from all three of its vertices,
so we know immediately that Q belongs to the set described in the statement of the theorem.
Furthermore, we know that Q is the only point which belongs to both the set and the plane of A,
B and C, for any such point must lie on the perpendicular bisectors of the segments [AB], [BC]
and [AC] and there is only one such point because the perpendicular bisectors are all distinct.

Suppose first that X lies on the line through Q which is perpendicular to the given plane and
X 6= Q. Then we have d(A,Q) = d(B,Q), | 6 XQA| = 90◦ = | 6 XQB|, and d(X,Q) = d(X,Q),
so that ∆XQA ∼= ∆XQB by SAS. Taking corresponding parts of these triangles, we find that
d(X,A) = d(X,B). Switching the roles of B and C in the preceding argument, we also see that
d(X,A) = d(X,C).

Conversely, suppose that X is equidistant from A, B and C. If X = Q then we know that X

belongs to the set described in the theorem, so suppose now that X 6= Q. It will be convenient to
use vectors; if we square the defining equations for the set, we obtain the following:

|X − A|2 = |X − B|2 = |X − C|2

If we expand the three expressions in this pair of equations and subtract |X|2 from each expression,
we obtain the equations

|A|2 − 2〈A,X〉 = |B|2 − 2〈B,X〉 = |C|2 − 2〈C,X〉 .

Since Q is equidistant from A, B and C we have a similar pair of equations in which X is replaced
by Q, and if we subtract the equations involving Q from the equations involving X we obtain a
system of equations involving X − Q:

−2〈A,Q − X〉 = −2〈B,Q − X〉 = −2〈C,Q − X〉

Obviously we can cancel the −2 factors, and if we subtract the first expression from the first and
third we obtain yet another set of equations:

〈B − A,Q − X〉 = 0 , 〈C − A,Q − X〉 = 0

Therefore the normal direction to the plane ABC is given by the line QX, and this means that
QX must be perpendicular to that plane.
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