NAME:

Mathematics 133, Fall 2007, Examination 1

Answer Key

1. [25 points] Find two points on the line L given by the intersection of the following two planes:

$$
x-y=2, \quad y-z=5
$$

SOLUTION

There are several valid approaches. For example, one can do so using row operations on the augmented matrix:

$$
\left(\begin{array}{ccccc}
1 & -1 & 0 & : & 2 \\
0 & 1 & -1 & : & 5
\end{array}\right) \longrightarrow\left(\begin{array}{ccccc}
1 & 0 & -1 & : & 7 \\
0 & 1 & -1 & : & 5
\end{array}\right)
$$

We can then solve for x and y in terms of z to get $x=7+z, y=5+z$. Any two points expressible in this form will yield a valid answer.
2. [20 points] (a) State the algebraic condition on vectors $\mathbf{x}, \mathbf{y}, \mathbf{z}$ in \mathbf{R}^{n} which is equivalent to the additivity equation for distances:

$$
d(\mathbf{x}, \mathbf{z})=d(\mathbf{x}, \mathbf{y})+d(\mathbf{y}, \mathbf{z})
$$

(b) Suppose that \mathbf{a} and \mathbf{b} are two points in the plane or space, and let suppose that \mathbf{x} is a third point which lies on the line $\mathbf{a b}$. Let C be the set of all points that are on the ray [ab but not on the closed segment [ab]. State the betweenness condition on $\mathbf{x}, \mathbf{a}, \mathbf{b}$ which is equivalent to saying that \mathbf{x} lies on C.

SOLUTION

(a) The algebraic condition is that $\mathbf{y}=t \mathbf{x}+(1-t) \mathbf{z}$ where $0 \leq t \leq 1$. The geometric condition is that \mathbf{y} should be EITHER between the other two points OR equal to one of them.
(b) Since \mathbf{x} lies on the ray $[\mathbf{a}, \mathbf{b}$ if and only if \mathbf{x} is one of \mathbf{a} or \mathbf{b}, \mathbf{x} is between \mathbf{a} and \mathbf{b}. or \mathbf{b} is between \mathbf{a} and \mathbf{x}, and \mathbf{x} lies on the segment $[\mathbf{a}, \mathbf{b}$ if and only if \mathbf{x} is one of \mathbf{a} or \mathbf{b}, or \mathbf{x} is between \mathbf{a} and \mathbf{b}, the condition for \mathbf{x} to lie on X is simply the condition that \mathbf{b} must be between \mathbf{a} and \mathbf{x}. In other words, \mathbf{x} must lie on the open ray ($\mathbf{a}^{\mathbf{O P}}$.
3. [30 points] Find the barycentric coordinates of $(2,2)$ with respect to $(1,0),(5,0)$ and $(1,4)$.

SOLUTION

Call the first point D and denote the remaining points by A, B and C respectively. We need to find scalars v and w such that $D-A=v(B-A)+w(C-A)$. Substituting in the numerical values, we obtain the following equation(s):

$$
(1,2)=v(4,0)+w(0,4)
$$

If we solve these for v and w we obtain $v=\frac{1}{4}$ and $w=\frac{1}{2}$. It follows that if

$$
D=u A+v B+w C
$$

with $u+v+w=1$, then we must have $D=\frac{1}{4} A+\frac{1}{4} B+\frac{1}{2} C$.
4. [25 points] Given the three points $(2,5),(6,5)$ and $(6,2)$, find two of them which lie on the same side of the line defined by the equation $3 y-2 x=1$.

SOLUTION

Let $f(x, y)=3 y-2 x-1$. Then we have $f(2,5)>0, f(6,5)>0$ and $f(6,2)<0$. Therefore $(6,5)$ and $(2,5)$ lie on one side of the line, while $(6,2)$ lies on the other,

