Mathematics 133, Winter 2009, Examination 3

Answer Key

1. [20 points] Assume we are working inside the Euclidean coordinate plane.

Let $h>0$, and consider the isosceles triangle whose vertices are $A=(-1,0), B=(1,0)$ and $C=(0, h)$. Find the (coordinates of) the circumcenter for $\triangle A B C$. [Hint: First explain why the circumcenter lies on the y-axis, which is the perpendicular bisector of $[A B]$, and use this to simplify the computations.]

SOLUTION.

The circumcenter lies on the perpendicular bisectors of the three sides of $\triangle A B C$, and the perpendicular bisector of $[A B]$ is the y-axis, so the circumcenter must lie on the y-axis and its x-coordinate is zero.

One way to find the perpendicular bisector of $[B C]$ is to think of it as the set of all points equidistant from B and C, so that its equation is

$$
(x-1)^{2}+y^{2}=x^{2}+(y-h)^{2}
$$

which simplifies to

$$
1-2 x=h^{2}-2 y h .
$$

The circumcenter's coordinates satisfy this equation and $x=0$. If we solve these two equations for x and y, we see that

$$
y=\frac{h^{2}-1}{2 h} .
$$

2. [20 points] Assume we are working inside some Euclidean plane.

Suppose that we are given $\triangle A B C$ and $\triangle D E F$ such that $\triangle A B C \sim \triangle D E F$, and let $G \in(B C)$ and $H \in(E F)$ be the feet of perpendiculars from A to $B C$ and D to $E F$ respectively. Using the basic similarity theorems for triangles, prove that

$$
\frac{d(D, H)}{d(A, G)}=\frac{d(E, F)}{d(B, C)}
$$

(in other words, the lengths of the altitudes of the two triangles are proportional to the lengths of the sides).

SOLUTION.

We know that $\angle A B G=\angle A B C$ and $\angle D E F=\angle D E H$, and therefore the assumption that $\triangle A B C \sim \triangle D E F$ implies that $|\angle A B G|=|\angle A B C|=|\angle D E F|=|\angle D E H|$. Since $A G$ and $D H$ are altitudes, we also know that $|\angle A G B|=90^{\circ}=|\angle D H E|$. Therefore $\triangle A G B \sim \triangle D H E$ by the AA Similarity Theorem. By the definition of similar triangles this yields the proportionality equation

$$
\frac{d(D, E)}{d(A, B)}=\frac{d(D, H)}{d(A, G)} .
$$

But we also have $\triangle A B C \sim \triangle D E F$, which yields the proportionality equation

$$
\frac{d(D, E)}{d(A, B)}=\frac{d(E, F)}{d(B, C)}
$$

Combining these, we obtain the ratio equation stated in the exercise.
NOTE. Drawings for this problem and further discussion appear in the online file exam3w09comments.pdf.
3. [15 points] Assume we are working inside some Euclidean plane.

Suppose that in $\triangle A B C$ we have $d(A, B)=2, d(B, C)=3$ and $d(A, C)=4$. Let D be the point on $(B C)$ such that $[A D$ bisects $\angle B A C$. Find $d(B, D)$ and $d(C, D)$.

SOLUTION.

Let $x=d(B, D)$, so that $d(C, D)=3-x$ (because we have $B * D * C)$.
By the Angle Bisector Theorem (Theorem III.5.13 in the notes) we have

$$
\frac{2}{4}=\frac{d(A, B)}{d(A, C)}=\frac{d(B, D)}{d(C, D)}=\frac{x}{3-x}
$$

so that $2(3-x)=4 x$. This simplifies to $6-2 x=4 x$, which means that $x=1$. Therefore we have $d(B, D)=x-1$ and $d(C, D)=3-x=2$.
4. [20 points] Assume we are working inside some hyperbolic plane.

Suppose that in $\triangle A B C$ is an isosceles triangle with $d(A, B)=d(A, C)$, and let D and E be points satisfying the conditions $A * B * D, A * C * E$, and $d(B, D)=d(C, E)$. Prove that $|\angle A D E| \neq|\angle A B C|$ and determine which of these is smaller.

SOLUTION.

This is essentially Exercise V.4.5, with one small twist.
Since we have $A * B * D$ and $A * C * E$ hold, we have

$$
d(A, D)=d(A, B)+d(B, D)=d(A, C)+d(C, E)=d(A, E)
$$

so that $\triangle A D E$ is isosceles. Therefore $|\angle A D E|=|\angle A E D|$ by the Isosceles Triangle Theorem; note that the assumption in the exercise and the same theorem also imply that $|\angle A B C|=|\angle A C B|$. Using these and the fact that $\angle D A E=\angle B A C$, we may write the angle defects of $\triangle A B C$ and $\triangle A D E$ as follows:

$$
\begin{aligned}
& \delta(\triangle A B C)=180^{\circ}-|\angle B A C|-2 \cdot|\angle A B C| \\
& \delta(\triangle A D E)=180^{\circ}-|\angle D A E|-2 \cdot|\angle A D E|
\end{aligned}
$$

Since $B \in(A D)$ and $C \in(A E)$, two applications of Theorem V.4.4 imply that $\delta(\Delta A D E)>$ $\delta(\triangle A B E)>\delta(\triangle A B C)$, so that

$$
180^{\circ}-|\angle D A E|-2 \cdot|\angle A D E|>180^{\circ}-|\angle B A C|-2 \cdot|\angle A B C| .
$$

Since $\angle A D E=\angle A B C$, this inequality implies that $|\angle A D E|<|\angle A B C|$.
NOTES. In Euclidean geometry one has a different conclusion; namely, $|\angle A D E|=$ $|\angle A B C|$. A drawing for this problem and further discussion appear in the online file exam3w09comments.pdf.
5. [10 points] Assume we are working inside some Euclidean plane.
(a) Given $\triangle A B C$, define its centroid, incenter and orthocenter.
(b) Which (if any) of the points in (a) are in the interior of $\triangle A B C$ for all triangles $\triangle A B C$, and which (if any) do not necessarily lie in the interior of $\triangle A B C$?

SOLUTION.

(a) The centroid is the point where the three medians of the triangle (the lines joining the vertices to the midpoints of the opposite side) meet. The incenter is the point where the three angle bisectors of the vertex angles meet. The orthocenter is the point where the three altitudes (perpendiculars from the vertices to the opposite sides) meet.
(b) The centroid and incenter always lie in the interior of the triangle but the orthocenter does not. (If all three vertex angles are acute, then the orthocenter lies in the interior, if one vertex angle is a right angle then the orthocenter is the corresponding vertex, and if one vertex angle is obtuse, then the orthocenter lies in the exterior; as suggested by the drawings for Problem 2 in exam3w09comments.pdf, in the third case an altitude to either edge of the obtuse angle contains no points in the interior of the triangle and meets the triangle in only one point - the vertex through which it passes.)
6. [15 points] Assume we are working inside some neutral plane.
(a) State the Saccheri-Legendre Theorem.
(b) Suppose that A, B, C, D are four points such that no three are collinear. State the defining conditions for A, B, C, D (in that order) to be the vertices of a Saccheri quadrilateral with base $[A B]$.
(c) Suppose that A, B, C, D are four points such that no three are collinear. State the defining conditions for A, B, C, D (in that order) to be the vertices of a Lambert quadrilateral.

SOLUTION.

(a) Given $\triangle A B C$, we have $|\angle A B C|+|\angle B C A|+|\angle C A B| \leq 180^{\circ}$.
(b) The points C and D must lie on the same side of $A B$, with $A B$ perpendicular to $B C$ and $A D$ and $d(A, D)=d(B, C)$ (equivalently, the vertices form the vertices of a convex quadrilateral plus the last two conditions).
(c) Three (or more) of the angles $\angle A B C, \angle B C D, \angle C D A, \angle D A B$ must be right angles.

