Footnote to http://math.ucr.edu/~res/math133/examples0101.pdf:

Strictly speaking, one needs to prove that the vector \mathbf{c} lies in the interior of $\angle \mathbf{a O b}$, but one obstacle to doing so is that the interior of an angle is not defined in Unit I. However, this follows directly from Proposition II.3.3 (see page 61 of the notes) because c is a linear combination of \mathbf{a} and \mathbf{b} in which both coefficients are positive by construction (of course, we can also retrieve the barycentric coordinate of \mathbf{O} because the sum of the barycentric coordinates is always equal to $\mathbf{1}$).

