The excenters of a triangle

This material supplements Section III.4 of the notes.

<u>Theorem.</u> Given a triangle \triangle ABC, let D and E be points such that A*C*D and A*B*E, let [BX and [CY denote the bisectors of \angle ABE and \angle BCD respectively (the external bisectors of the angles at B and C), and let [AZ denotes the bisector of \angle BAC. Then the rays [BX, [CY and [AZ are concurrent.

Proof. We shall first verify that **[BX** and **[CY** meet at a point **F**, and this point lies on the side of **BC** opposite **A**. The bisector conditions imply that $|\angle XBC| = \frac{1}{2} |\angle EBC|$ and $|\angle YCB| = \frac{1}{2} |\angle GCB|$. Since both $|\angle EBC|$ and $|\angle GCB|$ are less than **180** degrees, it follows that $|\angle XBC| + |\angle YCB| = \frac{1}{2} |\angle EBC| + \frac{1}{2} |\angle GCB| < 180$, and therefore by the classical version of Euclid's Fifth Postulate it follows that **(BX** and **(CY** meet at a point which lies on the same side of **BC** as **Y** and **Z**. To see that this intersection point **F** lies on the side of **BC** opposite **A**, proceed as follows: The bisector condition implies that **F**, **X** and **E** lie on the same side of **BC**, while the betweenness condition implies that **A** and **E** lie on opposite sides of **BC**, and therefore **F** and **A** must lie on opposite sides of **BC**.

We claim that **F** lies in the interior of \angle **BAC**. Since **F** lies on (**BX** and (**CY**, it follows that **F** lies in the interiors of both \angle **ABE** and \angle **BCD**. The second of these implies that **F** and **B** lie on the same side of **CD** = **AC**, while the first implies that **F** and **C** lie on the

same side of BE = AB; combining these, we obtain the assertion in the first sentence of this paragraph.

By construction the point **F** does not lie on any of the lines **AB**, **BC** or **AC**. Let **G**, **H** and **K** denote the feet of the perpendiculars from **F** to **AC**, **BC** and **AB** respectively. By the characterization of angle bisectors, we know that $d(\mathbf{F}, \mathbf{G}) = d(\mathbf{F}, \mathbf{H})$ and $d(\mathbf{F}, \mathbf{H}) = d(\mathbf{F}, \mathbf{K})$. Since **F** lies in the interior of \angle **BAC**, the preceding equations imply that **F** lies on the angle bisector [**AZ** of that angle. Therefore the point **F**, which by construction lies on (**BX** and (**CY**, must also lie on (**AZ**, which is what we wanted to prove.

The point **F** is called an <u>excenter</u> for the triangle. If we interchange the roles of the vertices in the original triangle, we obtain three different excenters. In the drawing below, the points J_A and J_B are two of the excenters, and the red lines through **A** and **B** meet in the third excenter J_C , which is out of the picture:

(Source: http://mathworld.wolfram.com/ExteriorAngleBisector.html)