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I I I.7 : Areas and volumes 
 

 
Most upper level undergraduate textbooks in geometry do not cover these topics, but for 
the sake of completeness we shall explain how they fit into the setting of these notes.   
Our axioms for area theory will be adapted from those presented by the School 
Mathematics Study Group in the following reference: 
 

School Mathematics Study Group, Mathematics for High 
School:  Geometry, Parts 1 and 2 (Student Text), Yale 
University Press, New Haven and London, 1961. 

 

Here are some online references that may also be helpful: 
 

http://en.wikipedia.org/wiki/Area_(geometry)     
 

http://www.gomath.com/htdocs/ToGoSheet/Geometry/area.html 
 

http://en.wikipedia.org/wiki/Area 
 

When we think of areas in the plane, we generally think of them as being defined for 
certain types of sets called closed regions; in particular, they generally have 
boundaries given by reasonable curves and contain these boundary curves.  For 

example, a closed triangular region should consist of some triangle ����ABC along with its 
interior, and similarly for other convex polygons.  It will be convenient to make this 
intuitive notion precise. 
 

Definition.  Suppose that A1, … , A n are the vertices of a convex polygon (taken in that 
order).  The closed region bounded by the convex polygon (or its closed convex 

polygonal region) is the intersection of the closed half planes H
#
( A k A k + 1; A k + 2), with 

the numbering conventions of Section I I I.3.  We shall often say that the convex 
polygon is the boundary of the closed convex polygonal regions and that the closed 
region is bounded by the polygon.  We shall denote the closed convex polygonal region 

associated to A1 … A n (in that order) by ����A1 … A  n . 
 

The following result will be helpful for deriving area formulas: 
 

Theorem 1.  (Classical Congruence Extension Property)   Suppose we are given ����ABC   

≅≅≅≅   ����DEF.  Then ����ABC is also congruent to ����DEF. 
 

Proof.    By the results of Section I I.4 there is a Galilean transformation T which sends 

A, B and C to D, E and F respectively; furthermore, this transformation sends ����ABC to 

����DEF.  We shall use the fact that T preserves barycentric coordinates to prove that T 

also sends ����ABC to ����DEF.  Let P be a typical point in R
2, and using barycentric 

coordinates expand P as a linear combination xA  +  yB  +  zC, where x + y + z  =  1. 

By definition, P lies in ����ABC if and only if x, y, and z are all nonnegative.  Since T(P)  =  

xD  +  yE  +  zF, it follows that T(P) lies in ����DEF if and only if the same condition is 

satisfied.  Therefore T maps ����ABC to ����DEF as required.� 
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Axioms for plane area 
 
 

We are going to need two additional undefined concepts to begin.  The first is a family of 

plane measurable subsets M (R
2
), often abbreviated to M, with the following simple 

properties: 
 

Axiom PM – 1:   The family M contains all closed interiors of convex polygons. 
 

Axiom PM – 2:   The family M is closed under taking set – theoretic unions, 

intersections and differences. 
 

We shall be particularly interested in the bounded subsets of M; namely, those that are 

contained in some square of the form – a  ≤   x,  y   ≤   a for some real number a. 
 

The second undefined concept is an area function A , which defines for each bounded 

subset S in M a nonnegative real number A(S)  called the area of S, and this function A 

is assumed to have the following properties: 
 

Axiom PM – 3  (Normalization condition) :  The area of a rectangular region 

����ABCD whose sides have lengths p and q is equal to the product pq. 
 

This axiom can be weakened at the expense of some extra work, but clearly we need to 
know something about the area of at least one nontrivial figure in order to get started. 
 

Axiom PM – 4  (Areas of collinear sets) :   The area of a bounded measurable 

subset of a line is equal to zero. 
 

This is one way of ensuring that familiar one – dimensional subsets have zero areas. 
 

Axiom PM – 5  (Invriance under congruence) :   If two bounded subsets of M 

are congruent, then their areas are equal. 
 

This principle is used frequently to help derive area formulas in elementary geometry. 
 

Axiom PM – 6  (Finite Additivity Postulate) :     If a bounded set S in M is the 

union of two similar sets S1 and S2 , and the sets S1 and S2 intersect in a set whose area 

is equal to zero, then the area of S is the sum of the areas of S1 and S2. 
 

The final axiom is illustrated by the drawing below.  Specifically, the area of the shaded 
region is given by adding the areas of the darker shaded region to the left and the lighter 
shaded region to the right.  The intersection of these closed regions is contained in the 
vertical line in the middle, and this intersection has area equal to zero because it is 
contained in a line. 
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Our next goal is to explain why these axioms yield the usual for the areas of familiar 

objects.   However, before we do so we need to digress and state some general 
properties of closed polygonal regions. 
 
 

Decompositions of regular polygons 
 
 

Classical derivations of area formulas for familiar plane figures often depend upon 
cutting a closed convex polygonal region up into smaller nonoverlapping regions of the 
same type.  Specifically, we are generally given a closed convex polygonal region which 
can be decomposed into a finite union of smaller such regions associated to polygons 

Pm such that the intersection of any two is a common edge of two bounding polygons or 
a common vertex of two or more bounding polygons.  Several examples are depicted 
below.  Note in particular that many of the smaller polygons can share  a given vertex 
and that one cannot draw any conclusions about the number of sides in the large 
polygon from the number of sides in the smaller polygons and vice versa. 
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Of course, the simplest situations involve convex polygons that are split into two pieces 
by a line.  The following result describes such situations. 
 

Theorem 2.  (Folding and Cutting Principle)  Suppose we are given a convex polygon of 

the form A1 … An, and suppose that B and C are points of A1 … An which do not lie on 
the same edge of the polygon.  Then the following hold: 
 

1. If B is the vertex A1 and C is the vertex Am where m is not equal to 

1 or n, then the sets { A1, … , A m}  and { A m, … , A n, A1 }  are the 

vertices of convex polygons such that ����A1 …A m   ∪∪∪∪ ����A m … A nA1   

=  ����A1 …A  n  and ����A1 …A  m   ∩∩∩∩ ����A m … A nA1 =  [A1 A m]. 
 

2. If B is the vertex A1 and C lies on the open segment  (A m A m + 1)  

where m is not equal to 1 or n, then the sets { A1, … , A m, C }  and 

{C, A m + 1, … , A n, A1 }  are the vertices of convex polygons such 

that ����A1 …A mC   ∪∪∪∪ ����CA m + 1 … A nA1 = ����A1 …A n  and 

����A1 …A mC   ∩∩∩∩ ����CA m + 1 … AnA1 =  [A1 C]. 
 

3. If B lies on the open segment  (A n A1) and C lies on another open 

segment of the form (A m A m +  1) where m is not equal to 1,  then the 

sets { B, A1, … , A m, C }  and {C, A m + 1, … , A n, B }  are the 

vertices of convex polygons for which we have ����BA1 …A mC   ∪∪∪∪ 

����CA m + 1 … AnB = ����A1 …An  and also ����BA1 …A mC   ∩∩∩∩ 

����CA m + 1 … A nB   =  [BC]. 
 

The name “folding and cutting” is used because this construction corresponds to 
taking a closed polygonal region cut from a sheet of paper, folding it along some line 
which passes through the interior of the polygon, and cutting the polygonal region into 
two pieces along the fold.  Here are drawings to illustrate the three cases when there are 
four original vertices.   

 
Note that we can obtain similar results if B is some vertex other than A1 or B lies on an 

open segment other than (A n A1).  For example, if we permute the roles of the A k 
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cyclically, with k going to k + 1 if k  <  n  and n going to 1, then we obtain similar 

conclusions if B  =  A n or B lies on (An – 1 A n), if we do this twice we get the same if B  =  

A n – 1 or B lies on (A n – 2 A n – 1), and likewise if we do this more than twice. 
  
The second result involves splitting a regular polygon into pieces using an interior point. 
 

Theorem 3.  (Star Decomposition Principle)  Suppose we are given a convex polygon of 

the form A1 … A n, and suppose that Q lies in the interior of A1 … A n.  Then the closed 

polygonal region ����A1 … An  is the union of the regions ����Q A1A2, … , ����Q A n – 1A n, 
and ����Q A nA1.  The intersection of two such closed regions is either a common edge of 
two triangles or the one point set { Q }. 
 

The drawing below depicts a typical example: 

 
It is possible to prove these results with the techniques we have developed in this 
course, but the proofs are long and tedious, and since the arguments do not shed much 

light on the central questions of this section, the details will be omitted.� 
 
 

Derivations of some area formulas 
 
 

Aside from the area formulas for rectangles, the next most basic examples are triangles.  
We begin with right triangles. 
 

Theorem 4.  Suppose we have ����ABC such that |∠∠∠∠ ACB|  =  90 with d(A, C)  =  b and 

d(B, C)  =  a.  If �ABC is the region bounded by ����ABC, then A(����ABC)  =  ½ ab.   
 

 
 

Proof.    Let L be the unique line through A that is parallel to BC, and let M be the 
unique line through B which is parallel to AC.  Since lines perpendicular to intersecting 
lines will intersect, it follows that L meets M in some point D; it follows that L  =  AD  and 
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M  =  BD.   Furthermore, by the parallelism and perpendicularity conditions we can also 
conclude that L is perpendicular to AC and M is perpendicular to BC.  In particular, since 
L and BC are parallel and BC is perpendicular to M, it also follows that L is 

perpendicular to M.  Since L  =  AD  and  M  =  BD, it follows that AD  ⊥⊥⊥⊥  BD.  Therefore 

we have shown that B, C, A and D (in that order) form the vertices of a rectangle!! 
 

By the normalization axiom, the area of the closed polygonal region S  =  �ACBD 

bounded by the rectangle � BCAD is equal to ab.    The first case of the Cutting and 

Folding Principle now implies that �ACBD = �ACB ∪∪∪∪ �ADB and �ACB ∩∩∩∩ �ADB  =  

[AB].  This means that  
 

A(�ACBD)    =    A(�ADB)  +  A(�ACB). 
 

Furthermore, since the opposite sides of a rectangle have equal length we have d(A, D)  

=  d(B, C)  =  a  and d(B, D)  =  d(A, C)  =  b.  Combining these with the assumption that 

|∠∠∠∠ACB|  =  |∠∠∠∠BDA|  =  90, we conclude that ����ACB    ≅≅≅≅    ����BDA .  By the Classical 

Congruence Extension Property mentioned above, we also know that �ACB is 

congruent to �BDA.  Thus we also have A(�ADB)   =   A(�ACB).  Combining the two 

equations above, we obtain A(�ACBD)   =   2 A(�ADB), and since the left hand side is 

equal to ab it follows that  2 A(�ADB) must be equal to ½ ab.� 
 

The next step is to generalize the area formula to arbitrary triangles. 
 

Theorem 5.  Suppose we are given ����BAC and that D is the foot of the perpendicular 

from B to AC.  Let d(A, C)  =  b and d(B, D)  =  h.  Then A(�ABC)  =   ½ bh. 
 

Proof.   We must consider several cases depending upon how D is related to A and C.  

Specifically, the possibilities are D∗A∗C, D = A, A∗D∗C, D = C, and A∗C∗D.  The first 

and fifth correspond to each other if we reverse the roles of A and C, and the first and 
fifth correspond to each other if we reverse the roles of A and C,  so it suffices to 
consider the last three cases. 
 

 
 

The case C =  D is demonstrated in the previous theorem.  Suppose now that A∗D∗C.  

By the second part of the Cutting and Folding Principle we have �ABC  =  ����ADC ∪∪∪∪ 

����BDC and ����ADC ∩∩∩∩ ����BDC  =  [BD].  This means that  
 

A(����ABC)    =    A(����ADC)  +  A(����BDC)  = 
 

½ d(A, D)h  +  ½ d(D, C)h  =  ½ [d(A, D)  +  d(D, C) ]h. 
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Since A∗D∗C holds, the term inside the brackets is equal to d(A, C) and hence the area 

of �ABC is equal to ½ d(A, C)h.  Finally, since the term on the right is equal to b, it 

follows that A(�ABC)   =   ½ bh.   
 

Finally, suppose now that A∗C∗D.  By the second part of the Cutting and Folding 

Principle we now have �ADB  =  ����ACB ∪∪∪∪ ����CDB and ����ACB ∩∩∩∩ ����CDB  =  [CD].  
This means that 
 

A(����ADB)    =    A(����ACB)  +  A(����CDB)  =   A(����ACB)  +  ½ d(D, C)h   
 

However, by the previous theorem we also have, and if we make this substitution we 
obtain the equation 
 

½ d(A, D)h   =   A(����ADB)   =    A(����ACB)  +  ½ d(D, C)h 
 

which we may rewrite as   
 

A(����ACB)  =  ½ d(A, D)h  –  ½ d(D, C)h  =  ½ [d(A, D)  –  d(D, C) ]h. 
 

Since A∗C∗D holds, the term inside the brackets is equal to d(A, C) and hence the area 

of �ABC is equal to ½ d(A, C) h.  Finally, since the term on the right is equal to b, it 

follows that A(�ABC)   =   ½ bh.  This completes the verification of the area formula in 

all cases.� 
 

One can also find the area of �ABC in terms of the lengths of its sides using a formula 
named after Heron (or Hero) of Alexandria (10 A.D. – 75 A.D.). 
 

Theorem 6.  (Heron’s Formula)   Given ����ABC, denote the lengths of its three sides by  

d(B, C)  =  ab,  d(A, C)  =  b,  and  d(A, B)  =  c, and let  s  =  ½(a + b + c).  Then we 
have 

 

A(�ABC)   =   sqrt(s(s – a)(s – b)(s – c) ). 
 

Proof.    We know that at least two of the vertex angle measures for the triangle are less 

than 180, and without loss of generality we might as well assume that both | ∠∠∠∠BCA | 
and | ∠∠∠∠CAB | are less than 90; the other cases will follow by interchanging the roles of 

A, B and C.   Let D ∈∈∈∈ AC be such that BD is perpendicular to AC.  Then a corollary to 

the Exterior Angle Theorem implies that D lies on the open segment (AC).   
 

 
 

Let d(B, D)  =  h, and let  d(A, D)  =  x, so that d(C, D)  =  b – x. The central idea will be 

to solve for h in terms of s, a, b, and c using the Pythagorean Theorem and some 
algebraic manipulations. 
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Applying the Pythagorean Theorem to right triangles ����ADB and ����BDC, we obtain the 
equations 
 

x
2
  +  h

2
   =   c

2
                  (b –  x)

 2
  +  h

2
   =   a

2
 

 

and if we solve for h
2
 we obtain the equations c

2
 –  x

2
   =  h

2
  =  a

2
 –  b

2  
+ 2bx  –  x

2
.  

Adding x
2
 to each side of this equation yields c

2
  =   a

2
 –  b

2  
+ 2bx, and if we solve this 

for x we find that  x   =   (c
2
 –  a

2  
+  b

2
)/2b.   Substituting this back into the first 

equation we find that  
 

h
2
  =  c

2 
–  x

2  
  =   c

2 
–  [(c

2
 –  a

2  
+ b

2
)/2b] 

2
. 

 

If Q denotes the area of �ABC, then we know that Q  =  hb/2, and therefore we have  
 

Q 

2
   =  h

2
 b

2/4   =   [4c
2
b

2  
–  (c

2
– a

2
 + b

2
)

2
]/16   = 

 

(2a
2
c

2
 + 2a

2
b

2
 + 2c

2
b

2  
–  a

4  
–  c

4  
–  b

4)/16. 
 

The final expression for Q 

2
 should look promising because it is symmetric in a, b and c.  

.We must now see if we can to rewrite this expression more concisely.   The key to doing 
so is the following algebraic identity, which may be checked directly by expanding the 
right hand side:   
 

2a
2
c

2
 + 2a

2
b

2
 + 2c

2
b

2  
–  a

4  
–  c

4  
–  b

4
    = 

 

(a + b + c)( – a + b + c)( a – b + c)( a + b – c) 
 

If we let p  =   a + b + c (the perimeter), then we have  
 

(a + b + c)( – a + b + c)( a – b + c)( a + b – c)   =    p(p – 2a)(p – 2b)(p – 2c) 
 

and we may use these equations to write to write 
 

Q 

2
   =   p(p – 2a)(p – 2b)(p – 2c) /16. 

 

If we now let p  =   2s, then the preceding equation becomes  
 

Q 

2
   =   p(p – 2a)(p – 2b)(p – 2c) /16   =   2s(2s – 2a)(2s – 2b)(2s – 2c) /16   = 

 

16s(s – a)(s – b)(s – c) /16   =   s(s – a)(s – b)(s – c) 
 

and if we take square roots of both sides we obtain the area formula in the statement of 

the theorem.� 
 

Brahmagupta's_formula.  A remarkable analog of Heron’s Formula for cyclic convex 

quadrilaterals (i.e., the vertices lie on a circle) was discovered by the prominent Hindu 
mathematician Brahmagupta (598 – 670).  Specifically, suppose that A, B, C, D are the 

vertices of a convex quadrilateral which all lie on some circle ΓΓΓΓ, denote the lengths of 

their sides by a, b, c, and d, and let  s  be equal t =  ½(a + b + c + d).  Then we have 

 

A(�ABCD)   =   sqrt(s(s – a)(s – b) (s – c)(s – d) ). 
 

Further information on proofs for this result may be found at the following online sites: 
 

http://jwilson.coe.uga.edu/emt725/brahmagupta/brahmagupta.html 
 

http://en.wikipedia.org/wiki/Brahmagupta's_formula 
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The next results are the area formulas for parallelograms and trapezoids.  Recall from 

Section I I I. 3 that if L and M are parallel lines and N  =  AB is a line which is 

perpendicular to L and M at A and B respectively, then the distance d(A, B) depends 

only on  L  and  M ; in other words, if we are given any other N
∗
, A

∗
 and B

∗
 with the 

corresponding properties, then d(A, B)  =  d(A
∗
, B

∗
). 

 

Theorem 7.   Suppose that A, B, C and D form the vertices of a convex quadrilateral (in 

that order) such that AB || CD.  Let h denote the distance from a point on one of these 
two lines to the other line. 
 

1. If BC || AD (so that the quadrilateral is a parallelogram) and b  =  d(A, B), then 

the area of ����ABCD is equal to bh. 
2. If BC and AD are not parallel (so that the quadrilateral is a proper trapezoid) 

such that we have b1  =  d(A, B) and b2  =  d(C, D), then the area of ����ABCD is 

equal to ½( b1 + b2) h. 
 

Proof.    We first consider the case, in which the convex quadrilateral ABCD is assumed 
to be a parallelogram.   

 
By the fundamental results on parallelograms, we have d(A, B)  =  d(C, D) and d(A, D)  

=  d(C,B).  Since d(B, D)  =  d(D, B), it follows that ����ABD  ≅≅≅≅  ����CDB by SSS.  
Therefore the Classical Congruence Extension Property and the invariance of area 

under congruence imply that A(����ABD)  =  A(����CDB). 
 

By the first part of the folding and cutting principle, it follows that ����ABCD = ����ABD ∪∪∪∪ 

����CDB and ����ABD ∩∩∩∩ ����CDB  =  [BD], so that  
 

A(����ABCD)    =    A(����ABD)  +  A(����CDB)   =   2 A(����ABD). 
 

Since A(����ABD)  =  ½ bh, it follows that A(����ABCD)  =  bh, as required in the case of 
parallelograms. 
 

Suppose now that the quadrilateral is a trapezoid with AB || CD.  If d(A, B)  =  d(C, D)  
then the quadrilateral is a parallelogram, so we might as well assume that the lengths of 
the opposite parallel sides are unequal.  Strictly speaking, there are two cases 

depending upon whether d(A, B)  >  d(C, D)  or  d(A, B)  <  d(C, D), but as usual we 
can extract the second case from the first by interchanging the roles of A and B with 

those of C and D respectively.  As in the statement of the theorem, let b1  =  d(A, B) and 

b2  =  d(C, D).  
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Let E  =  D + B – A, so that A, B, E and D (in order) are the vertices of a parallelogram.  

Since both DE and CD are parallel to AB, it follows that DC  =  DE.  We claim that 

D∗C∗E holds.  Since CD || AB, it follows that C  =  D + k(B – A) for some scalar k. 
Furthermore, since we know that A, B, C and D form the vertices of a trapezoid it follows 

that C lies in the interior of ∠∠∠∠ DAB; in terms of barycentric coordinates, this means that 

k must be positive.  Therefore we have  
 

b2  =  d(C, D)  =  || C – D ||  =  k || B – A ||  =  kb1 
 

and since b2  <  b1 it follows that  k  <  1.  Therefore we have the desired order relation 

B∗C∗E. 
 

By the second part of the folding and cutting principle, we have ����ABCE  =  ����ABCD ∪∪∪∪ 

����BCE and ����ABCD ∩∩∩∩ ����BCE  =  [BC].  Therefore we also have the equation 
 

A(����ABED)    =    A(����ABCD)  +  A(����BCE). 
 

By the previously established formula for parallelograms we know that  A(����ABED)  =  

b1h  and  A(����BCE)  =  ½( b1 – b2) h.  It follows that  
 

A(����ABCD)    =    A(����ABED)  –  A(����BCE)   = 
 

b1 h  –  ½( b1 – b2)  h   =   (b1 – ½ b1 + ½ b2) h  =   ½( b1 + b2) h 
 

which is the formula stated in the theorem.� 
 

The final area formula in this section will cover regular polygons.  In order to state this 
formula, we shall need some definitions.  The perimeter of an arbitrary convex polygon 

A1 … A n is defined as usual to be the sum of the lengths of the sides: 
 

p   =   d(A1, A2)   + …  +  d(A n  –  1, An)  +  d(A n, A1) 
 

Proposition 8.  Suppose that A1 … An is a convex polygon, and let Q be its center.  For 

each k  =  1, … , n let Ck be the foot of the perpendicular from Q to A kA k + 1 (here An + 1  

=  A1 by our usual numbering conventions).  Then all of the distances d(Q, Ck) are 

equal. 
 

This common value is called the apothem (pronounced “AP – o – them” with all short 
vowels, the “th” as in “thin,” the heaviest accent on the first syllable, and a secondary 
accent on the last syllable). 
 

Proof.    By the description of regular polygons in Section I I I.3, we know that  
 

d(A1, Q)  =  d(A2, Q)  =  …  =  d(A n, Q) 
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and we also know that  
   

d(A1, A2)  =  …  =  d(An – 1, An)  =  d(An, A1) , 
 

so that SSS implies  
 

����QA1A2    ≅≅≅≅    …    ≅≅≅≅    ����QA n – 1A n    ≅≅≅≅    ����QA nA1 . 
 

Furthermore, all these triangles are isosceles triangles; therefore, if ����QAkAk + 1  is one 

of these triangles (with the standard convention if k  =  n) and Ck is the foot of the 

perpendicular from Q to AkAk + 1 , then Ck lies on the open segment (AkAk + 1) and in fact 
is its midpoint (by the characterization of perpendicular bisectors).  Therefore we have 

d(Ak, Ck)  =  ½ d(Ak , Ak + 1) for all k, and hence we also have  
 

d(A1, C1)  =  …  =  d(A n – 1, Cn – 1)  =  d(An, Cn). 
  

By SSS we now have  
 

����QA1C1    ≅≅≅≅     …    ≅≅≅≅    ����QAn – 1Cn – 1    ≅≅≅≅    ����QAnCn 
 

and the latter implies the desired string of equations d(Q, C1)  =  …  =  d(Q, Cn – 1)  =  

d(Q, Cn).� 
 

Before turning to the area formula for regular polygons, we shall dispose of one step in 
the proof that is valid for an arbitrary convex polygon. 
 

Proposition 9.  Suppose that A1, … , An are the vertices of a convex polygon (taken in 
that order), and let Q be a point in the interior of this polygon. Then we have  
 

A(����A1 … An)   =   A(����QA1A2)  +  …  +  A(����QAn – 1An)   +   A(����Q AnA1) .  
 

Proof.   For k  =  2, …, n let Xk be the set ����QA1A2 ∪∪∪∪ … ∪∪∪∪ ����QAk – 1Ak , so that the 

Star Decomposition Property implies  Xk  =  X k – 1 ∪∪∪∪ ����QAk – 1Ak and X k – 1 ∩∩∩∩ ����QAk – 1Ak 

=  [Q Ak – 1 ].  By the additivity property we then have the recursive equations 
 

A(����Xk)   =  A(����X k – 1)  +  A(����QAk – 1Ak) 
 

and hence we have 
 

A(����Xk)   =   A(����Q A1A2)  +  …  +  A(����QAk – 1Ak) 
 

for k  =  3, …, n.  Finally, we also have ����A1 … An  =  Xn ∪∪∪∪ ����QAnA1 and Xn ∩∩∩∩ 

����QAnA1  =  [QAn] ∪∪∪∪ [QA1].  Now the two closed segments on the right hand side have 
areas equal to zero, and they only have the endpoint Q in common, and hence by the 

Additivity Property we know that the area of [QAn] ∪∪∪∪ [QA1] is also equal to zero.  We 

can then apply the Additivity Property one more time to conclude that  
 

A(����A1 … An)   =  A(����Xn)  +  A(����Q AnA1) 
 

and if we combine this with the previous equation and the Star Decomposition Property 
we obtain  
 

A(����A1 … An)   =   A(����QA1A2)  +  …  +  A(����QAn – 1An)  + A(����Q AnA1) 
 

which is the formula in the statement of the theorem.� 
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Theorem 10.  Suppose that A1, … , An are the vertices of a regular polygon (taken in 

that order).  If p denotes the perimeter of this regular polygon and a denotes its 

apothem, then   A(����A1 … An)   =   ½ pa. 
 

Proof.  Let Q be the center of the regular polygon. If we now apply the previous result 
and the area formula for triangles, we find that  
 

A(����A1 … An)   =   A(����QA1A2)  +  …  +  A(����QAn – 1An)   +   A(����Q AnA1)  = 
 

½ d(A1, A2) a  +  …  +  ½ d(An – 1, An) a   +   ½ d(An, A1) a  = 
 

½[ d(A1, A2) + … + d(An – 1, An) + d(An, A1) ] a  =  ½ pa 
 

which is the formula stated in the theorem.� 
 

We have only discussed some of the material about areas from elementary geometry.  

Further information can be found in Chapters 13 – 14 of the book by Moïse and the 
following online sites: 

 

http://en.wikipedia.org/wiki/Area_(geometry) 
 

http://www.gomath.com/htdocs/ToGoSheet/Geometry/area.html 
 

 

Axioms for volumes 
 
 

We are not going to prove any theorems about volumes of figures in space, but we shall 
state the axioms and mention some complications that arise when passing from two to 
three dimensions.  Since the final axiom for volumes involves plane areas, it will also be 
necessary to discuss the role of plane area in three dimensions. 
 

As in the planar case, the first thing we need is an undefined concept given by a family 

of measurable subsets M (R
3
), often abbreviated to M,  which is assumed to satisfy 

the following simple properties:  
 

Axiom SM – 1:   The family M  contains all of the standard rectangular solids  S  

=   [a1, b1] × [a2, b2] × [a3, b3] given by all points whose coordinates ( x, y, z ) satisfy 

the inequalities a1   ≤   x   ≤   b1, a2   ≤   y   ≤   b2,  and a3   ≤   z   ≤   b3 . 
 

Given a plane P in space and a point X not on P, the closed half space  H
#
( P; X)  is 

defined to be the union of the P with the side of P (in space) containing X. 
 

Axiom SM – 2 :   If P is a plane in space and S belongs to M,  then the intersection 

S ∩∩∩∩ P belongs to M , and if X is a point in space which does not lie on P, then the 

intersection S ∩∩∩∩ H
#
( P; X) belongs to M .   Furthermore, the family MP of all subsets of 

P which lie in M satisfies the previous axioms AM – 1 and AM – 2. 
 

Axiom SM – 3:   The family M is closed under taking set – theoretic unions, 

intersections and differences. 
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We shall be particularly interested in the bounded subsets of M; namely, those that are 

contained in some square of the form  – k   ≤   x,  y,  z   ≤   k for some real number k. 
 

The next assumption states that planes in space have decent notions of area. 
 

Axiom SM – 4:   For each plane P there is an area function A   P , which is defined on 

the bounded subsets of the family MP  and satisfies the previous axioms AM – 3 

through AM – 6. 
 

This axiom implicitly contains a second undefined concept; namely, a family of area 

functions A   P, one for each plane P; frequently the subscript is omitted to in order to 

simplify the notation.  The third undefined concept will be a volume function V, which 

defines for each bounded subset S in M a nonnegative real number V(S)  called the 

volume of S, and this function V is assumed to have the following properties: 
 

Axiom SM – 5  (Normalization condition) :   The volume of the rectangular solid 

described in Axiom SM – 1 is the product of the length of the sides; in other words, it is 

equal to  (b1 – a1) (b2 – a2) (b3 – a3). 
  

Axiom SM – 6  (Areas of coplanar sets) :   The volume of a bounded measurable 

subset of a plane  is equal to zero. 
 

Axiom SM – 7  (Invariance under congruence) :   If two bounded subsets of M 

are congruent, then their volumes are equal. 
 

Axiom SM – 8  (Finite Additivity Postulate) :   If a bounded set S in M is the 

union of two similar sets S1 and S2 , and the sets S1 and S2 intersect in a set whose 

volume is equal to zero, then the volume of S is the sum of the volumes of S1 and S2. 
 

Each of the preceding four axioms is a direct analog of an axiom for plane area.   
However, we also need one further assumption: 
 

Axiom SM – 9  (Cavalieri’s Principle) :   Suppose that we are given two 

bounded measurable sets S1 and S2 and also a plane P,  and suppose further that for 

every plane Q parallel to P the intersections Q ∩∩∩∩ S1 and Q ∩∩∩∩ S2 have equal areas.  

Then S1 and S2 have equal volumes. 
 

This is clearly different from any of the plane area postulates, so we shall try to (1) make 
it plausible and (2) explain why it is needed. 
 

As its name suggests, Axiom SM – 9 reflects ideas advanced by B. Cavalieri (1598 – 
1647); in fact, the key ideas were implicit in a work of Archimedes (287 B.C.E. – 212 

B.C.E.) called The Method , but he viewed it as a tool to discovering new facts rather 
than a genuine mathematical result, and this work was lost and essentially unknown for 
many centuries until its rediscovery in 1909.  Historically the principle represents one 
step in the development of integral calculus, and it can be explained fairly simply in such 
terms.  In order to simplify the discussion, we shall assume that the plane P in Axiom 

SM – 9 is the xy – plane (in any case this can be achieved by changing coordinates).  A 
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bounded measurable set S is then contained between two planes parallel to P; for the 

sake of definiteness we shall assume these planes are defined by z  =  c  and z  =  d 

respectively, where c  <  d.  For each t such that c  ≤  t  ≤  d,  let Pt be the plane defined 

by z  =  t ; then each set  Pt ∩∩∩∩ S is a bounded measurable subset of the plane,  and as 

such has an area  a( t )  =  A(Pt ∩∩∩∩ S); if Pt ∩∩∩∩ S is empty then by convention A(Pt ∩∩∩∩ S)  

=  0.  An example is depicted on the next page in which S is a cylindrical region in space 
whose axis is perpendicular to P, and we also assume it is the piece whose upper and 

lower boundaries are the parallel planes z  =  0  and z  =  1.  In this special case each of 

the slices Pt ∩∩∩∩ S is a closed disk (a circle together with its interior points), and the areas 

a( t ) of the slices are equal to some fixed value B. 

 

( Source:  http://www.mathleague.com/help/geometry/3space.htm ) 
 

For the particular cylindrical example in the illustration, we know that the volume is equal 

to the product of B with d – c  =  1 .  More generally, a “disk method” argument as in 
ordinary integral calculus will strongly suggest that in more general cases, where the 

areas a( t ) of the slices Pt ∩∩∩∩ S  may vary with t , then the volume of the solid should be 

given by the following integral formula:  
 

 
 

Furthermore, if S is contained between two arbitrary parallel planes z  =  c  and z  =  d 

where c  <  d,  then one obtains a similar integral in which the lower and upper limits of 

integration are c  <  d respectively.  Suppose now that we have S1 and S2 satisfying the 

hypotheses of SM – 9, and define 
 

ak( t )   =   A(Pt ∩∩∩∩ Sk),         k  =  1, 2 
 

so that the hypotheses of SM – 9 yield a1( t )  =  a2( t ).    The preceding discussion 

suggests that V(Sk) is equal to the definite integral of ak( t ) from z  =  c  to z  =  d, and 
one can assume that the limits of integration are the same in both instances.  Therefore 

the condition a1( t )  =  a2( t ) implies that V(S1) and V(S2) are integrals of the same 

function and hence should be equal.  But this means that V(S1) and V(S2) should be 
equal.  In fact, one can justify all of this rigorously using machinery developed in 
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graduate level courses on measure theory.  We shall say more about the latter and its 
ties to elementary geometry at the end of this section. 
 

The assumption of something like Cavalieri’s Principle is not merely a matter of 
convenience, but on the contrary it is logically unavoidable.  Early evidence for this 
appears in classical Greek geometry writings on geometry, where proofs of basic 
theorems on volumes are often far more complicated and delicate than the proofs for 
theorems on plane areas.  There are numerous examples of this in the Elements, and 
the subsequent work of Archimedes took things much further; much of this work was 
based upon a method of exhaustion, which anticipated the use of limits but avoided 
doing so explicitly by means of very complicated proofs by contradiction.   When the 
logical foundations of classical geometry were scrutinized near the end of the 19th 
century, there was renewed interest in questions concerning the need for ideas from 
integral calculus, and during the first few years of the 20th century M. Dehn (1878 – 
1952) proved results confirming the need for some input related to limits and calculus in 
any mathematically complete treatment of even the most basic volume problems in 
elementary geometry (for example, finding the volumes of pyramids with triangular 
bases).  There is some general information on Dehn’s results and related topics in the 
online reference listed below: 
 

http://en.wikipedia.org/wiki/Hilbert's_third_problem 
 
 

Logical redundancy of area and volume axioms 
 

 

We have already noted that many advanced treatments of elementary geometry do not 
discuss axioms for area and volume.  One important reason is that mathematicians can 

define measurable sets, areas and volumes for R
2
 and R

3
 in a unique way such that 

the basic properties in the axioms are satisfied; this is generally done using the theory of 
Lebesgue measure and integration named after H. Lebesgue (1875 – 1941).  Virtually 
every graduate level text on real analysis or measure theory will provide highly detailed 
information on this subject.  Here are some online references which summarize the main 
points of the theory: 
 

http://en.wikipedia.org/wiki/Lebesgue_measure 
 

http://mathworld.wolfram.com/LebesgueMeasure.html 
 

There is also a considerably simpler theory of Jordan measure which is closely related 
to the theory of the Riemann integral in undergraduate real analysis courses and is 
adequate for the purposes of elementary geometry (but not for certain other classes of 
mathematical problems); this theory was developed somewhat earlier by C. Jordan 
(1838 – 1922).  Some online references for Jordan measure are listed below: 

 

http://en.wikipedia.org/wiki/Jordan_measure 
 

http://mathworld.wolfram.com/JordanMeasure.html 
 

In particular, we note that suitable versions of Cavalieri’s Principle can be deduced as 
theorems in either of these measure theories.  These are immediate consequences of 
Tonelli’s Theorem or Fubini’s Theorem; these results of L. Tonelli (1885 – 1946) and 
G. Fubini (1879 – 1943) are extremely general versions of the advanced calculus 
principle for evaluating multiple integrals as iterated integrals. 


