Exercises for Unit II (Vector algebra and Euclidean geometry)

II.1: Approaches to Euclidean geometry

Supplementary background readings.

Ryan: pp. 5 – 15

- 1. What is the minimum number of planes containing three concurrent noncoplanar lines in coordinate 3 space \mathbb{R}^3 ?
- 2. What is the minimum number of planes in coordinate 3 space \mathbb{R}^3 containing five points, no four of which are coplanar? [*Hint*: No three of the points are collinear.]
- 3. Suppose that **a**, **b**, **c**, **d** are four noncoplanar points in \mathbb{R}^3 . Explain why the lines **ab** and **cd** are disjoint but not coplanar (in other words, they form a pair of **skew lines**).
- 4. Let L be a line in coordinate 2 space \mathbb{R}^2 or 3 space \mathbb{R}^3 , let x be a point not on L, and let $p_1, \dots p_n$ be points on L. Prove that the lines $\mathbf{x} p_1, \dots \mathbf{x} p_n$ are distinct. Why does this imply that \mathbb{R}^2 and \mathbb{R}^3 contain infinitely many lines?
- 5. Suppose that $L_1, ..., L_n$ are lines in coordinate 2 space \mathbb{R}^2 or 3 space \mathbb{R}^3 . Prove that there is a point \mathbf{q} which does not lie on any of these lines. [*Hint:* Take a line \mathbf{M} which is different from each of $L_1, ..., L_n$; for each j we know that \mathbf{M} and L_j have at most one point in common, but we also know that \mathbf{M} has infinitely many points.]
- 6. Suppose that $p_1, ..., p_n$ are points in coordinate 2 space \mathbb{R}^2 or 3 space \mathbb{R}^3 . Prove that there is a line L which does not contain any of these points. [*Hint:* Let x be a point not equal to any of $p_1, ..., p_n$ and take a line L through x which is different from each of $x p_1, ..., x p_n$.]
- 7. Let **P** be a plane in coordinate 3 space \mathbb{R}^3 , let **a**, **b**, **c** be noncolinear points on **P**, let **z** be a point which is not on **P**, and let **u** and **v** be distinct points on the line **cz**. Show that the planes **P**, **abu** and **abv** are distinct. Using this and ideas from Exercise 4, prove that there are infinitely many planes in coordinate 3 space \mathbb{R}^3 which contain the line **ab**.
- 8. Suppose we have an abstract system (P, \mathcal{L}) consisting of a set P whose elements we call **points** and a family of proper subsets \mathcal{L} that we shall call **lines** such

that the points and lines satisfy axioms (I-1) and (I-2). Assume further that every line L in P contains at least three points. Prove that P contains at least seven points.

II.2: Synthetic axioms of order and separation

Supplementary background readings.

Ryan: pp. 11 - 15, 19 - 21, 50 - 52, 55 - 62, 68

- 1. Suppose that **A**, **B**, **C** are collinear points in \mathbb{R}^3 whose coordinates are given by (a_1, a_2, a_3) , (b_1, b_2, b_3) , and (c_1, c_2, c_3) respectively. Prove that A*B*C holds if we have $a_1 < b_1 < c_1$, $a_2 = b_2 = c_2$, and $a_3 > b_3 > c_3$.
- 2. In the coordinate plane \mathbb{R}^2 , let A = (1, 0), B = (0, 1), C = (0, 0) and D = (-2, -1). Show that the lines AB and CD intersect in a point X such that A*X*B and D*C*X hold. [Hint: Construct X explicitly.]
- 3. In the coordinate plane \mathbb{R}^2 , suppose that A, B, C, D, E are points not on the same line such that $\mathbb{A}*\mathbb{B}*\mathbb{C}$ and $\mathbb{A}*\mathbb{D}*\mathbb{E}$ hold. Prove that the segments (BE) and (CD) have a point in common. [Hint: Use barycentric coordinates with respect to the points A, B and D.]
- 4. In the coordinate plane \mathbb{R}^2 , let X=(4,-2) and Y=(6,8), and let L be the line defined by the equation 4y=x+10. Determine whether X and Y lie on the same side of L.
- 5. In the coordinate plane \mathbb{R}^2 , let X=(8,5) and Y=(-2,4), and let L be the line defined by the equation y=3x-7. Determine whether X and Y lie on the same side of L.
- 6. Let L be a line in the plane P, and suppose that M is some other line in P such that L and M have no points in common. Prove that all points of M lie on the same side of L in P.
- 7. State and prove a generalization of the previous result to disjoint planes in 3 space.
- 8. Suppose that L is a line in the plane of triangle $\triangle ABC$. Prove that L cannot meet all three of the open sides (AB), (BC) and (AC).

9. Let V be a vector space over the real numbers, and let $S = \{v_0, v_1, \ldots, v_k\}$ be a subset of V. A vector x in V is said to be a *convex combination* of the vectors in S if x is expressible as a linear combination of the form $a_0v_0 + a_1v_1 + \ldots + a_nv_n$ such that $a_0 + a_1 + \ldots + a_n = 1$ and $0 \le a_j \le 1$ for all j. Let $S = \{v_0, v_1, \ldots, v_k\}$ be a subset of V, and let $T = \{w_0, w_1, \ldots, w_m\}$ be a set of vectors in V which are convex combinations of the vectors in V. Suppose that V is a vector in V which is a convex combination of the vectors in V. Prove that V is also a convex combination of the vectors in V.

II.3: Measurement axioms

Supplementary background readings.

Ryan: pp. 11 – 15, 50 – 52, 58 – 62, 68

- 1. Suppose we are given a line containing the two points **A** and **B**. Then every point **X** on the line can be expressed uniquely as a sum A + k(B A) for some real number k. Let $f: L \to R$ be defined by f(X) = kd(A, B). Prove that f defines a 1-1 correspondence such that d(X, Y) = |f(X) f(Y)| for all points X, Y on L. [Hint: Recall that d(X, Y) = |X Y|.]
- 2. Suppose that we are given a line L and \underline{two} distinct 1-1 correspondences between L and the real line R which satisfy the condition in the Ruler Postulate D-3, say $f:L\to R$ and $g:L\to R$. Prove that these functions satisfy a relationship of the form g(X)=af(X)+b, where a and b are real numbers with $a=\pm 1$. [Hint: Look at the function $h=g\circ f^{-1}$, which is a distance preserving 1-1 correspondence from R to itself. Show that such a map has the form h(t)=at+b, where a and b are as above. To do this, first show that if b is a distance preserving b 1 correspondence from R to itself then so is b 1.
- 3. In the coordinate plane, determine whether the point X = (9, 4) lies in the interior of $\angle ABC$, where A = (7, 10), B = (2, 1) and C = (11, 1). Also, determine the values of k for which (17, k) lies in the interior of $\angle ABC$.
- 4. Answer the same questions as in the preceding exercise for X = (30, 200) and X = (75, 135).

- 5. Answer the same questions as in Exercise 3 when X = (-5, 8), A = (-4, 8), B = (-1, 2) and C = (-5, -12).
- 6. Suppose we are given $\angle ABC$. Prove that the open segment (AC) is contained in the interior of $\angle ABC$.
- 7. Suppose we are given $\triangle ABC$ and a point **D** in the interior of this triangle, and let **E** be any point in the same plane except **D**. What general conclusion about the intersection of $\triangle ABC$ and [**DE** seems to be true? Illustrate this conjecture with a rough sketch.
- 8. Suppose that we are given $\triangle ABC$ and a point X on (BC). Prove that the open segment (AX) is contained in the interior of $\triangle ABC$.
- 9. Let $\angle ABC$ be given. Prove that there is a point **D** on the same plane such that **D** and **A** lie on opposite sides of **BC**, but d(A, B) = d(D, B) and $|\angle ABC| = |\angle DBC|$. [*Hint:* This uses both the Ruler and Protractor Postulates.]
- 10. (Ryan, Exercise 31, p. 68) Suppose we are given $\triangle ABC$ and a point **D** in the interior of this triangle. Prove that **D** lies on an open segment (XY), where X and Y lie on the triangle.

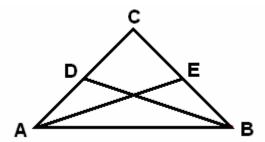
II.4: Congruence, superposition and isometries

Supplementary background readings.

Ryan: pp. 11 - 15, 19 - 21, 49 - 52, 55 - 62, 64 - 66, 68

- 1. Let $\angle ABC$ be given. Prove that there is a unique *angle bisector* ray [BD such that (BD is contained in the interior of $\angle ABC$ and $|\angle ABD| = |\angle DBC| = \frac{1}{2} |\angle ABC|$. [*Hints:* Let E be the unique point on (BA such that d(B, E) = d(B, C), and let D be the midpoint of [CE]. Recall that there should be proofs for both existence and uniqueness.]
- 2. Give an example of a triangle \triangle ABC for which the standard formal congruence statement \triangle ABC \cong \triangle BCA is false.
- 3. Suppose we are given $\triangle ABC$ and $\triangle DEF$ such that $\triangle ABC \cong \triangle DEF$. Explain why we also have $\triangle ACB \cong \triangle DFE$ and $\triangle BCA \cong \triangle EFD$.

4. Suppose $\triangle ABC$ is an isosceles triangle with d(A, C) = d(B, C), and let **D** and **E** denote the midpoints of [AC] and [BC] respectively. Prove that $\triangle DAB \cong \triangle EBA$.



- 5. Suppose we are given \triangle ABC and \triangle DEF such that \triangle ABC \cong \triangle DEF, and suppose that we have points G on (BC) and H on (EF) such that [AG and [DH bisect \angle BAC and \angle EDF respectively. Prove that \triangle GAB \cong \triangle HDE.
- 6. Conversely, in the setting of the previous exercise suppose that we are not given the condition $\triangle ABC \cong \triangle DEF$, but we are given that $\triangle GAB \cong \triangle HDE$. Prove that $\triangle ABC \cong \triangle DEF$.
- 7. Let K be a convex subset of R^n . A point X in K is said to be an *extreme point* of K if it is not between two other points of K. Suppose that T is an affine transformation of R^n , and suppose that T maps the convex set K onto the convex set K. Prove that K maps the extreme points of K to the extreme points of K.
- 8. Suppose that **T** is the affine transformation of \mathbf{R}^n given by $\mathbf{T}(\mathbf{x}) = \mathbf{L}(\mathbf{x}) + \mathbf{v}$, where **L** is an invertible linear transformation and **v** is a fixed vector in \mathbf{R}^n ; In terms of coordinates, if **L** is given by the $n \times n$ matrix $\mathbf{A} = (a_{i,j})$ and $\mathbf{v} = (b_1, \dots, b_n)$, then one has the following expression for $\mathbf{y} = \mathbf{T}(\mathbf{x})$ in terms of coordinates:

$$y_i = a_{i,1} x_1 + ... + a_{i,n} x_n + b_i$$

Let ${f DT}$ be the ${f derivative\ matrix}$ whose $(i,\ j)$ entry is given by

$$\frac{\partial y_i}{\partial x_j}$$

- (a) Show that the (i, j) entry of **DT** is equal to $a_{i,j}$.
- (b) If T_1 and T_2 are affine transformations of R^n , explain why $D(T_1 \circ T_2)$ is the matrix product $D(T_1)D(T_2)$. [Hint: Expand the composite $T_1 \circ T_2$.]
- (c) Explain why **T** is a translation if and only if **D(T)** is the identity matrix.
- (d) If T is a translation and S is an arbitrary affine transformation, prove that the composite $S^{-1} \circ T \circ S$ is a translation. What is its value at the vector 0?
- 9. The *vertical reflection* S(c) about the horizontal line y = c in \mathbb{R}^2 is the affine map defined by $(x_1, x_1) = (x_1, 2c x_2)$. Show that S(c) sends the horizontal line into

itself and interchanges the horizontal lines y = 2c and y = 0. Prove that the composite of two vertical reflections S(a)S(b) is a translation, and the composite of three vertical reflections S(a)S(b)S(c) is a vertical reflection S(d); evaluate d explicitly. [Hints: For the twofold composite, what is the derivative matrix? Also, explain why the twofold composite S(a)S(b) sends (0,0) to a point whose first coordinate is equal to zero.]

10. Let **A** be the orthogonal matrix

$$\begin{pmatrix}
\cos \mathbf{\theta} & \sin \mathbf{\theta} \\
\sin \mathbf{\theta} & -\cos \mathbf{\theta}
\end{pmatrix}$$

where θ is a real number. Show that there is an orthonormal basis $\{u, v\}$ for \mathbb{R}^2 such that $\mathbf{A}\mathbf{u} = \mathbf{u}$ and $\mathbf{A}\mathbf{v} = -\mathbf{v}$.

11. Let **A** be the orthogonal rotation matrix

$$\begin{pmatrix} \cos \mathbf{\theta} & -\sin \mathbf{\theta} \\ \sin \mathbf{\theta} & \cos \mathbf{\theta} \end{pmatrix}$$

where θ is a real number which is <u>not</u> an integral multiple of 2π , let $b \in \mathbb{R}^2$, and let T be the Galilean transformation T(x) = Ax + b. Prove that there is a unique vector z such that T(z) = z. [<u>Hint:</u> A is not the identity matrix, and in fact A - I is invertible; prove the latter assertion.]

II.5 : Euclidean parallelism

Supplementary background readings.

Ryan: pp.
$$11 - 15$$
, $17 - 18$, $49 - 50$, $58 - 59$, 68

Exercises to work.

1. Suppose that L and M are skew lines in \mathbb{R}^3 . Prove that there is a unique plane P such that L is contained in P and M is parallel to (*i.e.*, disjoint from) P. [<u>Hints:</u> Write L and M as x + V and y + W, where V and W are 1 - dimensional vector subspaces. Since L and M are not parallel, we know that V and W are distinct. Let U be the vector subspace V + W. Why is U a 2 - dimensional subspace? Set P = x + U and verify that P has the desired properties; in particular, if M and P have a point z in common, note that M = z + W and P = z + U.

- 2. Suppose that P and Q are parallel planes in R^3 , and let S be a plane which meets each of them in a line. Prove that the lines of intersection $S \cap P$ and $S \cap Q$ must be parallel.
- 3. Suppose that we are given three distinct planes S, P and Q in \mathbb{R}^3 such that S is parallel to both P and Q. Prove that P and Q are parallel. [*Hint*: Through a given point x not on S, how many planes are there that pass through x and are parallel to S?]
- Suppose that \mathbf{v} and \mathbf{w} are linearly independent vectors in \mathbf{R}^3 , and let \mathbf{z} be a third vector in \mathbf{R}^3 . Let a and b be real numbers. Prove that $\mathbf{f}(a,b) = |\mathbf{z} a\mathbf{v} b\mathbf{w}|$ takes a minimum value when $\mathbf{z} a\mathbf{v} b\mathbf{w}$ is perpendicular to both \mathbf{v} and \mathbf{w} . [Hint: Take an orthonormal basis \mathbf{e} , \mathbf{f} for the span of \mathbf{v} and \mathbf{w} , and let $\mathbf{Q}(\mathbf{z}) = \mathbf{z} \langle \mathbf{z}, \mathbf{e} \rangle \mathbf{e} \langle \mathbf{z}, \mathbf{f} \rangle \mathbf{f}$. Why is \mathbf{z} perpendicular to \mathbf{e} , \mathbf{f} , \mathbf{v} , and \mathbf{w} ? Find the length squared of the vector

$$z - s e - tf = Q(z) - [s - \langle z, e \rangle]e - [t - \langle z, f \rangle]f$$

using the fact that **e**, **f** and **Q(z)** are mutually perpendicular. Why is the (square of the) length minimized when the coefficients of **e** and **f** are zero? Why is the minimum value of $\mathbf{g}(s,t) = |\mathbf{z} - s\mathbf{e} - t\mathbf{f}|$ equal to the minimum value of $\mathbf{f}(a,b) = |\mathbf{z} - a\mathbf{v} - b\mathbf{w}|$?

- 5. Suppose that we have two skew lines in \mathbb{R}^3 of the form $\mathbf{0a}$ and \mathbf{bc} . Let \mathbf{x} and \mathbf{y} be points of $\mathbf{0a}$ and \mathbf{bc} respectively. Prove that the distance $d(\mathbf{x}, \mathbf{y}) = |\mathbf{x} \mathbf{y}|$ is minimized when $\mathbf{x} \mathbf{y}$ is perpendicular to \mathbf{a} and $\mathbf{c} \mathbf{b}$. (In other words, the shortest distance between the two skew lines is along their common perpendicular.)
- 6. (Ryan, Exercise 38, p. 36) Let W, X, Y, Z be four points in \mathbb{R}^3 , no three of which are collinear, let A, B, C, D be the midpoints of WX, XY, YZ, and ZW, and suppose that we have $AB \neq CD$ and $AD \neq BC$. Prove that $AB \parallel CD$ and $AD \parallel BC$.
- 7. (Ryan, Exercise 30, p. 68) Let $\angle ABC$ be given, and let **D** lie in the interior of $\angle ABC$. Prove that **D** lies on an open segment (XY), where $X \in (BA)$ and $Y \in (BC)$.