NAME:

# Mathematics 133, Fall 2007, Examination 2 

Answer Key

1. [30 points] (a) State Pasch's Posulate (also known as Pasch's Theorem).
(b) State the conditions that and ordered list of four coplanar points $A, B, C, D$ must satisfy in order to be the vertices of a convex quadrilateral.
(c) Explain why the ordered list of points $A, B, C, D$ will give the vertices of a convex quadrilateral if $A B \| C D$ and $A D \| B C$.

## SOLUTION

(a) This is given in the notes.
(b) The points $A$ and $B$ must lie on the same side of $C D$, the points $C$ and $D$ must lie on the same side of $A B$, the points $A$ and $D$ must lie on the same side of $B C$, and the points $B$ and $C$ must lie on the same side of $A D$.
(c) If $A B \| C D$, then $A$ and $B$ are on the same side of $C D$, and likewise $C$ and $D$ are on the same side of $A B$. Similarly, if $A D \| B C$, then $A$ and $D$ are on the same side of $B C$, and likewise $B$ and $C$ are on the same side of $A D$.
2. [25 points] Suppose we are given two triangles $\triangle A B C$ and $\triangle D E F$ such that $\triangle A B C \cong \triangle D E F$, and let $G$ and $H$ be the midpoints of $[B C]$ and $[E F]$ respectively. Prove that $\triangle G A C \cong \triangle H D F$ and $\triangle G A B \cong \triangle H D E$.

## SOLUTION

This is given in the solutions to the exercises for Section III.2.■
3. [25 points] By definition and a theorem from the notes, the circumcenter $V$ of $\Delta A B C$ is the unique point satisfying $|V-A|^{2}=|V-B|^{2}=|V-C|^{2}$, and the circumradius is the common value for the distance from $V$ to these vertices. Find the circumcenter of the triangle in $\mathbf{R}^{2}$ with vertices $(0,0),(3,4)$ and $(6,0)$.

10 POINTS EXTRA CREDIT. Find the circumradius of the triangle, and show it is a rational number by computing its value explicitly.

## SOLUTION

In coordinates, the equations defining the circumradius are $x^{2}+y^{2}=(x-3)^{2}+(y-$ $4)^{2}=(x-6)^{2}+y^{2}$. If we subtract $x^{2}+y^{2}$ from all sides of this equation we obtain the system of linear equations $0=25-6 x-8 y=36-12 x$. Solving these, we obtain $x=3$ and $y=7 / 8$.

Extra credit question. The circumradius is equal to the distance from the circumcenter to the vertices. For computational purposes, in this problem it is most convenient to pick the vertex $(0,0)$, for in this case the circumradius simply turns out to be the length of $V$. Thus the circumradius is given by

$$
\sqrt{3^{2}+\left(\frac{7}{8}\right)^{2}}=\sqrt{\frac{24^{2}+7^{2}}{8^{2}}}=\sqrt{\frac{25^{2}}{8^{2}}}
$$

and hence it is equal to $25 / 8=3 \frac{1}{8}$.-
4. [20 points] Suppose that we are given an isosceles triangle $\triangle A B C$ such that $d(A, B)=d(A, C)>d(B, C)$. Determine which of the following is true, and state the theorem which yields this conclusion.

$$
|\angle A B C|<60^{\circ}<|\angle B A C|, \quad|\angle A B C|>60^{\circ}>|\angle B A C|
$$

## SOLUTION

Since the longer side is opposite the larger angle, it follows that $|\angle A B C|>60^{\circ}>$ $|\angle B A C|$.

