UPDATED GENERAL INFORMATION - NOVEMBER 5, 2007

NEW DUE DATE FOR HOMEWORK ASSIGNMENT. The assignment will now be due in discussion the section meeting on Thursday, November 8.

QUIZ COVERAGE. The quiz on November 8 will cover material from Sections II. 3 through III. 2 .
STEPS IN A PROOF OF THEOREM III.2.13. This is a slightly different approach than the one in the notes, and we concentrate on the steps involving order and separation.

For this argument, we are given $\triangle A B C$, and L is the unique line through A which is parallel to $B C$. Points D and E on L are chosen so that C and D lie on opposite sides of $A B$, and E is chosen so that $D * A * E$. - The objective is to prove (i) B and E lie on opposite sides of $A B$, (ii) the point B lies in the interior of $\angle D A C$.

If these two conditions are known, they are enough to justify the usual proof that the sum of the measures of the vertex angles in $\triangle A B C$ is 180 degrees. We shall go through the argument step by step.

1. There is a point $X \in A B \cap(C D)$ (by the Plane Separation Property and the assumption that C and D lie on opposite sides of $A B$).
2. The points B and C lie on the same side of L (by construction $B C \| L$, and if they were on different sides then $(B C)$ and L would have a point in common).
3. X and C lie on the same side of $L(C \notin L$ implies that $C D \neq L$, so $C * X * D$ and $D \in L$ imply C and X lie on the same side).
4. $\quad X$ and B lie on the same side of L (combine the preceding two steps).
5. $\quad[A X=[A B$ (since $[A Y$ is the union of $\{A\}$ with all points on the same side of L as Y in each case).
6. X and B lie on the same side of $A C$ (since $[A X=[A B$ is the union of $\{A\}$ with all points on one side of $A C$).
7. X and D lie on the same side of $A C$ (since $C * X * D$ and $C D \neq A C$, the latter because $C \notin L=A D)$.
8. B and D lie ont he same side of $A C$ (combine the preceding two steps).
9. THEREFORE B and E lie on opposite sides of $A C(D * A * E$ implies that D and E lie on opposite sides, while the preceding step shows B abd D lie on the same side).
10. FURTHERMORE B lies in the interior of $\angle D A C$ (by Step 2 we know that B and C lie on the same side of $A D=L$, while by Step 8 we know that B and D lie on the same side of $A C) . ■$
