## FIGURES FOR SOLUTIONS TO SELECTED EXERCISES

## II : Vector algebra and Euclidean geometry

## II. 1 : Approaches to Euclidean geometry

II.1.4.


The objective of this exercise is to prove that the lines $\mathbf{x p}_{1}, \mathbf{x p}_{2}$, etc. are distinct.

## II.1.7.



The objective of this exercise is to prove that the planes abu and abv are distinct.

## II. 2 : Synthetic axioms of order and separation

## II.2.1.



The line is contained in the plane $\boldsymbol{y}=\boldsymbol{d}$, where $\boldsymbol{d}=\boldsymbol{a}_{\mathbf{2}}=\boldsymbol{b}_{\mathbf{2}}=\boldsymbol{c}_{2}$, and the objective of this exercise is to prove that $\left(\boldsymbol{b}_{1}, \boldsymbol{b}_{2}, \boldsymbol{b}_{3}\right)$ is between $\left(\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \boldsymbol{a}_{3}\right)$ and $\left(\boldsymbol{c}_{1}, \boldsymbol{c}_{2}, \boldsymbol{c}_{3}\right)$.
II.2.2.


The points $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}$ are plotted as given, the objective of this exercise is to prove that that the lines $\mathbf{A B}$ and $\mathbf{C D}$ meet in some point $\mathbf{X}$, and this point satisfies the order relations $\mathbf{A} * \mathbf{X} * \mathrm{~B}$ and $\mathrm{D} * \mathrm{C} * \mathbf{X}$.
II.2.3.


The objective of this exercise is to prove that the lines $\mathbf{B E}$ and $\mathbf{C D}$ meet in some point $\mathbf{X}$, and this point satisfies the order relations $\mathbf{C} * \mathbf{X} * \mathbf{D}$ and $\mathbf{B} * \mathbf{X} * \mathbf{E}$. It might be helpful to use specific points $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}, \mathbf{E}$ when trying to understand this problem; for example, try $A=(0,0), B=(\mathbf{1}, \mathbf{1}), C=(3,3), \quad D=(2,0), E=(4,0)$.

