FIGURES FOR SOLUTIONS TO SELECTED EXERCISES

III : Basic Euclidean Concepts and theorems

III. 2 : Basic theorems on triangles

III.2.3.

We are given $\mathbf{R} * \mathbf{S} * \mathbf{T}, \boldsymbol{d}(\mathbf{R}, \mathbf{S})=\boldsymbol{d}(\mathrm{L}, \mathbf{T})$, and $\boldsymbol{d}(\mathbf{P}, \mathbf{S})=\boldsymbol{d}(\mathbf{P}, \mathbf{T})$. The objective is to prove that we have overlapping congruent triangles \triangle RTP $\cong \triangle L S P$ and that we also have $|\angle P S R|=|\angle P T L|$.
III.2.4.

The point \mathbf{B} which is the midpoint of both [AE] and [CD], and the objective is to prove that $\mathbf{A C}|\mid \mathbf{D E}$. One method for doing this is to find a pair of alternate interior angles.
III.2.6.

We are given that $\boldsymbol{d}(\mathbf{A}, \mathbf{B})=\boldsymbol{d}(\mathbf{A}, \mathbf{C})$, and that \mathbf{D} and E are points of $(\mathbf{A B})$ and $(\mathbf{A C})$ such that $d(A, D)=\boldsymbol{d}(\mathbf{A}, E)$. To prove that $\mathbf{B C} \| D E$, it suffices to find a pair of corresponding angles.

III.2.7.

More generally, if \mathbf{D} is a point in the interior of $\triangle A B C$ such that [AD bisects $\angle C A B$ and [$B D$ bisects $\angle C B A$, then there is a formula relating $|\angle A D B|$ and $|\angle A C B|$.

III.2.8.

The perpendicular pairs of lines are marked in the drawing, and the objective is to show that $|\angle \mathbf{D A B}|=|\angle \mathbf{B E C}|$. In high school geometry books, such a result is often stated in the form if two angles have their corresponding sides perpendicular, left to left and right to right, then the angles have equal measurements.

FIGURES FOR SOLUTIONS TO SELECTED EXERCISES

III : Basic Euclidean Concepts and theorems

III. 3 : Convex polygons

III.3.1.

In this figure, each of the diagonals of the convex quadrilateral determines a pair of triangles which share a common edge. The midpoints of the sides of the original convex quadrilateral are also midpoints of the sides of these triangles.

II.3.2.

By a previous exercise we know that the midpoints $\mathbf{P}, \mathbf{Q}, \mathbf{R}, \mathbf{S}$ (in that order) determine a parallelogram.

II.3.4.

We are given that $\boldsymbol{d}(\mathbf{A}, \mathrm{D})=\boldsymbol{d}(\mathbf{C}, \mathrm{D})$ in the trapezoid illustrated above, and the objective is to show that [AC bisects $\angle \mathrm{DAB}$. Note that $\triangle \mathrm{DAC}$ is isosceles.

III.3.6.

The points $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}$ form the vertices of a parallelogram, and the objective is to show that this parallelogram is a rhombus (all sides have equal length) if and only if $\mathbf{A C}$ is perpendicular to BD.

II.3.7.

In the drawing, two angles have equal measurement if they are marked with the same color.

III.3.14.

The points $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}$ form the vertices of a trapezoid with $\mathbf{A B} \| \mathbf{C D}$, and the midpoints of [AD] and [BC] are \mathbf{G} and \mathbf{H} respectively. In the first part of this exercise, the objective is to show that $\mathbf{G H}$ is parallel to $\mathbf{A B}$ and $\mathbf{C D}$ and to find its length in terms of the lengths of [AB] and [CD].

In the final part of the exercise the objective is to show that the midpoints \mathbf{S} and \mathbf{T} of the diagonals [AC] and [BD] both lie on the line GH.

III.3.15.

We are assuming that the points $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}$ form the vertices of an isosceles trapezoid with $\mathbf{A B} \| \mathbf{C D}$, and the points \mathbf{X} and \mathbf{Y} are the midpoints of [AB] and [CD] respectively. The idea is to use the basic properties of an isosceles trapezoid (various parts have equal measurements) to show that $\triangle A D Y \cong \triangle B C Y$ and $\triangle X A D \cong \triangle X B C$, so that Y will be equidistant from \mathbf{A} and \mathbf{B}, and \mathbf{X} will be equidistant from \mathbf{C} and \mathbf{D}.

