FIGURES FOR SOLUTIONS TO SELECTED EXERCISES

III. 3 : Convex polygons

III.3.1.

The points $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}$ form the vertices of a parallelogram, and the objective is to show that this parallelogram is a rhombus (all sides have equal length) if and only if $\mathbf{A C}$ is perpendicular to BD.
III.3.7.

The points $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}$ form the vertices of a trapezoid with $\mathbf{A B} \| \mathbf{C D}$, and the midpoints of [AD] and [BC] are \mathbf{G} and \mathbf{H} respectively. In the first part of this exercise, the objective is to show that $\mathbf{G H}$ is parallel to $\mathbf{A B}$ and $\mathbf{C D}$ and to find its length in terms of the lengths of [AB] and [CD].

In the final part of the exercise the objective is to show that the midpoints \mathbf{S} and \mathbf{T} of the diagonals [AC] and [BD] both lie on the line GH.

III.3.10.

We are assuming that the points $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}$ form the vertices of an isosceles trapezoid with $\mathbf{A B} \| \mathbf{C D}$, and the points \mathbf{X} and \mathbf{Y} are the midpoints of [AB] and [CD] respectively. The idea is to use the basic properties of an isosceles triangle (various parts have equal measurements) to show that $\triangle A D Y \cong \triangle B C Y$ and $\triangle X A D \cong \triangle X B C$, so that Y will be equidistant from \mathbf{A} and \mathbf{B}, and \mathbf{X} will be equidistant from \mathbf{C} and \mathbf{D}.

III. 4 : Concurrence theorems

III.4.2.

Given that the circumcenter \mathbf{V} of $\triangle \mathbf{A B C}$ lies in the interior of that triangle, the goal is to prove that all three vertex angles are acute. By the Addition Postulate for angle measurement, at each vertex \mathbf{D} the measure of the vertex angle at \mathbf{D} can be written as a sum of the measurements of two other angles in the drawing; note that the angle sum for each triangle in the drawing is equal to $\mathbf{1 8 0}$ degrees.

