
Irreducibility of ordered planes 
 
 

The document http://math.ucr.edu/~res/math133/nonmetric_models.pdf states the theorem 
stated below; our purpose here is to give the proof together with some drawings which 
may be helpful for understanding the argument.  
 

Theorem.    Suppose that P is plane which satisfies the standard axioms of incidence 

and order ( i.e., the betweenness and plane separation axioms).   If Q is a flat, 

noncollinear subset of P, then Q  =  P. 
 

For our purposes here, one especially important feature of such geometrical systems is 
that the standard Crossbar Theorem is true in all such geometrical systems (see 

Theorem I I.3.5 in the course notes); proofs of this result using only the betweenness 
and separation axioms are is are given in  pages 82 of Moïse and 116 – 117 of 
Greenberg. 
 

Proof.  As in the related document http://math.ucr.edu/~res/math133/irreducibleplanes1.pdf 

(which proves the analogous result for all projective planes and all but one affine plane),  
we are given that three noncollinear points A, B, C lie in the flat subset Q.  It follows 
immediately that the lines AB and BC are both contained in Q.   
 

 
 

Starting with this, we need to show that every point of P must also lie in Q.  There are 
several steps in this process; at each step we show that Q contains more points of P 
than were known at the preceding one, and ultimately we find that all points of P must be 

in Q.  If we choose D and E such that A∗B∗D and C∗B∗E hold, then by flatness we 

know that both D and E must lie in Q. 
 

 
 

By flatness, it follows that the lines AC, CD, DE and EA are also contained in Q, and of 
course this means that the segments (AC), (CD), (DE) and (EA) are also contained in Q. 
 



 

 

The next (very crucial!) step is to show that the entire interior of ∠∠∠∠ABC is contained in 
Q, and the drawing above suggests the argument.  Given a point X in the interior of 

∠∠∠∠ABC, the Crossbar Theorem implies that the ray (BX and the segment (AC) meet at 
some point Y.  Since this point lies on AC, it must belong to Q.  But we already know 
that B belongs to Q, and therefore the entire line BY, which contains X, must be 

contained in Q.  Since X was an arbitrary point in the interior of ∠∠∠∠ABC, this proves the 
latter is contained in Q. 
 

 
 

If we switch the roles of C and E in the preceding argument, we also find that the entire 

interior of ∠∠∠∠ABE is contained in Q.  Combining this with previously derived information, 
we see that all points on the same side of BC as A must belong to Q (observe that such 
a point is either on AB, on the same side of AB as C, or on the same side of AB as E). 
 

 
 

Finally, if we switch the roles of A and D in the preceding argument, we also find that all 
points on the same side of BC as D must also belong to Q.  Since all points of P either 
lie on BC, the same side of BC as A, or the same side of BC as D, it follows that every 

point in P must belong to Q, so that Q  =  P.���� 
 


