Exercises for Unit II
 (Vector algebra and Euclidean geometry)

II. 1 : Approaches to Euclidean geometry

1. What is the minimum number of planes containing three concurrent, noncoplanar lines in coordinate $\mathbf{3}$ - space $\mathbb{R}^{\mathbf{3}}$?
2. What is the minimum number of planes in coordinate 3 - space \mathbb{R}^{3} containing five points, no four of which are coplanar? [Hint: No three of the points are collinear.]
3. Suppose that $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}$ are four noncoplanar points in $\mathbb{R}^{\mathbf{3}}$. Explain why the lines $\mathbf{a b}$ and $\mathbf{c d}$ are disjoint but not coplanar (in other words, they form a pair of skew lines).
4. Let \mathbf{L} be a line in coordinate $\mathbf{2}$ - space $\mathbb{R}^{\mathbf{2}}$ or $\mathbf{3}$ - space $\mathbb{R}^{\mathbf{3}}$, let \mathbf{x} be a point not on \mathbf{L}, and let $\mathbf{p}_{1}, \ldots, \mathbf{p}_{\boldsymbol{n}}$ be points on \mathbf{L}. Prove that the lines $\mathbf{x} \mathbf{p}_{1}, \ldots, \mathbf{x p}_{\boldsymbol{n}}$ are distinct. Why does this imply that \mathbb{R}^{2} and $\mathbb{R}^{\mathbf{3}}$ contain infinitely many lines?
5. Suppose that L_{1}, \ldots, L_{n} are lines in coordinate 2 - space \mathbb{R}^{2} or $\mathbf{3 -}$ space $\mathbb{R}^{\mathbf{3}}$. Prove that there is a point \mathbf{q} which does not lie on any of these lines.
[Hint: Take a line \mathbf{M} which is different from each of $\mathrm{L}_{\mathbf{1}}, \ldots, \mathrm{L}_{\boldsymbol{n}}$; for each \boldsymbol{j} we know that \mathbf{M} and $\mathbf{L}_{\boldsymbol{j}}$ have at most one point in common, but we also know that \mathbf{M} has infinitely many points.]
6. Suppose that p_{1}, \ldots, p_{n} are points in coordinate $\mathbf{2 - s p a c e} \mathbb{R}^{\mathbf{2}}$ or $\mathbf{3}$ space $\mathbb{R}^{\mathbf{3}}$. Prove that there is a line \mathbf{L} which does not contain any of these points. [
$\underline{\text { Hint: Let } \mathbf{x}}$ be a point not equal to any of $\mathbf{p}_{\mathbf{1}}, \ldots, \mathbf{p}_{\boldsymbol{n}}$ and take a line \mathbf{L} through \mathbf{x} which is different from each of $\mathbf{x p}_{1}, \ldots, \mathbf{x p}_{n}$.]
7. Let \mathbf{P} be a plane in coordinate $\mathbf{3}$-space $\mathbb{R}^{\mathbf{3}}$, let $\mathbf{a}, \mathbf{b}, \mathbf{c}$ be noncolinear points on \mathbf{P}, let \mathbf{z} be a point which is not on \mathbf{P}, and let \mathbf{u} and \mathbf{v} be distinct points on the line $\mathbf{c z}$. Show that the planes \mathbf{P}, abu and $\mathbf{a b v}$ are distinct. Using this and ideas from Exercise 4, prove that there are infinitely many planes in coordinate $\mathbf{3}$-space $\mathbb{R}^{\mathbf{3}}$ which contain the line ab.
8. Suppose we have an abstract system (\mathbf{P}, \mathcal{L}) consisting of a set \mathbf{P} whose elements we call points and a family of proper subsets \mathcal{L} that we shall call lines such that the points and lines satisfy axioms (I-1) and (I-2). Assume further that
every line \mathbf{L} in \mathbf{P} contains at least three points. Prove that \mathbf{P} contains at least seven points.

Remark: The notes give an example of a system (\mathbf{P}, \mathcal{L}) such that that every line in \mathbf{P} contains exactly three points and \mathbf{P} itself contains exactly seven points.

II. 2 : Synthetic axioms of order and separation

1. Suppose that $\mathbf{A}, \mathbf{B}, \mathbf{C}$ are collinear points in $\mathbb{R}^{\mathbf{3}}$ whose coordinates are given by $\left(a_{1}, a_{2}, a_{3}\right),\left(b_{1}, b_{2}, b_{3}\right)$, and $\left(c_{1}, c_{2}, c_{3}\right)$ respectively. Prove that $\mathrm{A} * \mathrm{~B} * \mathrm{C}$ holds if we have $a_{1}<b_{1}<c_{1}, a_{2}=b_{2}=c_{2}$, and $a_{3}>b_{3}>c_{3}$.
2. In the coordinate plane $\mathbb{R}^{\mathbf{2}}$, let $\mathbf{A}=(\mathbf{1}, \mathbf{0}), \mathbf{B}=(\mathbf{0}, \mathbf{1}), \mathbf{C}=(\mathbf{0}, \mathbf{0})$ and $\mathbf{D}=(\mathbf{- 2}, \mathbf{- 1})$. Show that the lines $\mathbf{A B}$ and $\mathbf{C D}$ intersect in a point \mathbf{X} such that $\mathbf{A} * \mathbf{X} * \mathbf{B}$ and $\mathbf{D} * \mathbf{C} * \mathbf{X}$ hold. [Hint: Construct \mathbf{X} explicitly.]
3. In the coordinate plane $\mathbb{R}^{\mathbf{2}}$, suppose that $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}, \mathbf{E}$ are points not on the same line such that $\mathbf{A} * \mathbf{B} * \mathbf{C}$ and $\mathbf{A} * \mathbf{D} * E$ hold. Prove that the segments ($B E$) and (CD) have a point in common. [Hint: Use barycentric coordinates with respect to the points A, B and D.]
4. In the coordinate plane \mathbb{R}^{2}, let $\mathbf{A}=(\mathbf{4}, \mathbf{- 2})$ and $\mathbf{B}=(6,8)$, and let \mathbf{L} be the line defined by the equation $\mathbf{4 y}=\boldsymbol{x}+\mathbf{1 0}$. Determine whether \mathbf{A} and \mathbf{B} lie on the same side of \mathbf{L}.
5. In the coordinate plane \mathbb{R}^{2}, let $\mathbf{A}=(\mathbf{8}, \mathbf{5})$ and $\mathbf{B}=(-2,4)$, and let L be the line defined by the equation $\boldsymbol{y}=\mathbf{3 x}-7$. Determine whether \mathbf{A} and \mathbf{B} lie on the same side of \mathbf{L}.
6. Let \mathbf{L} be a line in the plane \mathbf{P}, and suppose that \mathbf{M} is some other line in \mathbf{P} such that \mathbf{L} and \mathbf{M} have no points in common. Prove that all points of \mathbf{M} lie on the same side of \mathbf{L} in \mathbf{P}.
7. State (in precise terms) and prove two generalizations of the previous result to disjoint planes in 3-space. One should involve disjoint planes in $\mathbf{3}$ - space, and the other should involve a line \mathbf{L} and a plane \mathbf{P} that are disjoint.
8. Suppose that L is a line in the plane of triangle $\triangle A B C$. Prove that L cannot meet all three of the open sides (AB), (BC) and (AC).
9. Let \mathbf{V} be a vector space over the real numbers, and let $\mathbf{S}=\left\{\mathbf{v}_{0}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ be a subset of \mathbf{V}. A vector \mathbf{x} in \mathbf{V} is said to be a convex combination of the vectors in \mathbf{S} if \mathbf{x} is a linear combination of the form $\boldsymbol{a}_{\mathbf{0}} \mathbf{v}_{\mathbf{0}}+\boldsymbol{a}_{\mathbf{1}} \mathbf{v}_{\mathbf{1}}+\ldots+\boldsymbol{a}_{\boldsymbol{n}} \mathbf{v}_{\boldsymbol{n}}$ such that $a_{0}+a_{1}+\ldots+a_{n}=1$ and $\mathbf{0} \leq a_{j} \leq 1$ for all j.

Let $\mathbf{S}=\left\{\mathbf{v}_{\mathbf{0}}, \mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\boldsymbol{k}}\right\}$ be a subset of \mathbf{V}, and let $\mathbf{T}=\left\{\mathbf{w}_{\mathbf{0}}, \mathbf{w}_{\mathbf{1}}, \ldots, \mathbf{w}_{\boldsymbol{m}}\right\}$ be a set of vectors in \mathbf{V} which are convex combinations of the vectors in \mathbf{S}. Suppose that \mathbf{y} is a vector in \mathbf{V} which is a convex combination of the vectors in \mathbf{T}. Prove that \mathbf{y} is also a convex combination of the vectors in \mathbf{S}.
10. For which values of t is the point $(\mathbf{1 7}, \boldsymbol{t})$ on the same side of the line defined by the equation $2 x+3 y=6$ as the point $(4,5)$?
11. Given the three points $(2,5),(6,5)$ and $(6,2)$, find two of them which lie on the same side of the line defined by the equation $3 y-2 x=1$.

II. 3 : Measurement axioms

1. Suppose we are given a line containing the two points \mathbf{A} and \mathbf{B}. Then every point \mathbf{X} on the line can be expressed uniquely as a sum $\mathbf{A}+\boldsymbol{k}(\mathbf{B}-\mathbf{A})$ for some real number \boldsymbol{k}. Let $\mathbf{f}: \mathrm{L} \rightarrow \mathbb{R}$ be defined by $\mathrm{f}(\mathbf{X})=\boldsymbol{k} \boldsymbol{d}(\mathbf{A}, \mathbf{B})$. Prove that f defines a $\mathbf{1} \mathbf{- 1}$ correspondence such that $d(\mathbf{X}, \mathbf{Y})=|\mathbf{f}(\mathbf{X})-\mathbf{f}(\mathbf{Y})|$ for all points \mathbf{X}, \mathbf{Y} on \mathbf{L}. [Hint: Recall that $d(X, Y)=|X-Y|$.
2. Suppose that we are given a line \mathbf{L} and two distinct $\mathbf{1 - 1}$ correspondences between \mathbf{L} and the real line \mathbb{R} which satisfy the condition in the Ruler Postulate (D \mathbf{D}), say $\mathbf{f}: \mathbf{L} \rightarrow \mathbb{R}$ and $\mathbf{g}: \mathbf{L} \rightarrow \mathbb{R}$. Prove that these functions satisfy a relationship of the form $\mathbf{g}(\mathbf{X})=\boldsymbol{a f}(\mathbf{X})+\boldsymbol{b}$, where \boldsymbol{a} and \boldsymbol{b} are real numbers with $a= \pm \mathbf{1}$. Hint: Look at the function $\mathbf{h}=\mathbf{g}^{-\mathbf{1}}$, which is a distance preserving $\mathbf{1 - 1}$ correspondence from \mathbb{R} to itself. Show that such a map has the form $\mathbf{h}(\boldsymbol{t})=$ $\boldsymbol{a} \boldsymbol{t}+\boldsymbol{b}$, where \boldsymbol{a} and \boldsymbol{b} are as above. To do this, first show that if \boldsymbol{h} is a distance preserving $\mathbf{1 - 1}$ correspondence from \mathbb{R} to itself then so is $\mathbf{k}(\boldsymbol{t})=\mathbf{h}(\boldsymbol{t})-\mathbf{h}(\mathbf{0})$, then show that \mathbf{k} must be multiplication by ± 1.]
3. In the coordinate plane, determine whether the point $X=(9,4)$ lies in the interior of $\angle A B C$, where $A=(7,10), B=(2,1)$ and $C=(11,1)$. Also, determine the values of \boldsymbol{k} for which $(\mathbf{1 7}, \boldsymbol{k})$ lies in the interior of $\angle \mathrm{ABC}$.
4. Answer the same questions as in the preceding exercise for $X=(\mathbf{3 0 , 2 0 0})$ and $X=(75,135)$.
5. Answer the same questions as in Exercise $\mathbf{3}$ when $\mathbf{X}=(-5,8), \mathbf{A}=$ $(-4,8), B=(-1,2)$ and $C=(-5,-12)$.
6. Suppose we are given $\angle A B C$. Prove that the open segment (AC) is contained in the interior of $\angle A B C$.
7. Suppose we are given $\triangle \mathbf{A B C}$ and a point \mathbf{D} in the interior of this triangle, and let \mathbf{E} be any point in the same plane except \mathbf{D}. What general conclusion about the intersection of $\triangle A B C$ and [DE seems to be true? Illustrate this conjecture with a rough sketch.
8. Suppose that we are given $\triangle A B C$ and a point X on (BC). Prove that the open segment (AX) is contained in the interior of $\triangle A B C$.
9. Let $\angle A B C$ be given. Prove that there is a point \mathbf{D} on the same plane such that D and A lie on opposite sides of $B C$, but $d(A, B)=d(D, B)$ and $|\angle A B C|=$ $|\angle \mathrm{DBC}|$. [Hint: This uses both the Ruler and Protractor Postulates.]
10. Suppose we are given $\triangle A B C$ and a point D in its interior. Prove that D lies on an open segment ($\mathbf{X Y}$), where \mathbf{X} and \mathbf{Y} lie on $\triangle \mathbf{A B C}$ and at least one of \mathbf{X}, \mathbf{Y} is not a vertex. [Further question: Why is the converse also true?]

II. 4 : Congruence, superposition and isometries

1. Let $\angle A B C$ be given. Prove that there is a unique angle bisector ray [BD such that (BD is contained in the interior of $\angle A B C$ and $|\angle A B D|=|\angle D B C|=$ $1 / 2|\angle A B C|$. [Hints: Let E be the unique point on ($B A$ such that $d(B, E)=$ $d(\mathbf{B}, \mathbf{C})$, and let \mathbf{D} be the midpoint of [CE]. Recall that there should be proofs for both existence and uniqueness.]
2. Give an example of a triangle $\triangle \mathbf{A B C}$ for which the standard formal congruence statement $\triangle A B C \cong \triangle B C A$ is false.
3. Suppose we are given $\triangle A B C$ and $\triangle D E F$ such that $\triangle A B C \cong \triangle D E F$. Explain why we also have $\triangle A C B \cong \triangle D F E$ and $\triangle B C A \cong \triangle E F D$.
4. Suppose $\triangle A B C$ is an isosceles triangle with $d(A, C)=d(B, C)$, and let D and E denote the midpoints of $[A C]$ and $[B C]$ respectively. Prove that $\triangle D A B \cong$ $\triangle E B A$.

5. Suppose we are given $\triangle A B C$ and $\triangle D E F$ such that $\triangle A B C \cong \triangle D E F$, and suppose that we have points \mathbf{G} on (BC) and \mathbf{H} on (EF) such that [AG and [DH bisect $\angle B A C$ and $\angle E D F$ respectively. Prove that $\triangle G A B \cong \triangle H D E$.
6. Conversely, in the setting of the previous exercise suppose that we are not given the condition $\triangle A B C \cong \triangle D E F$, but we are given that $\triangle G A B \cong \triangle H D E$. Prove that $\triangle A B C \cong \triangle D E F$.
7. Let \mathbf{K} be a convex subset of $\mathbb{R}^{\boldsymbol{n}}$. A point \mathbf{X} in \mathbf{K} is said to be an extreme point of \mathbf{K} if it is not between two other points of \mathbf{K}. Suppose that \mathbf{T} is an affine transformation of $\mathbb{R}^{\boldsymbol{n}}$, and suppose that \mathbf{T} maps the convex set \mathbf{K} onto the convex set \mathbf{L}. Prove that \mathbf{T} maps the extreme points of \mathbf{K} to the extreme points of \mathbf{L}.
8. Suppose that \mathbf{T} is the affine transformation of \mathbb{R}^{n} given by $\mathbf{T}(\mathbf{x})=\mathbf{L}(\mathbf{x})+\mathbf{v}$, where \mathbf{L} is an invertible linear transformation and \mathbf{v} is a fixed vector in $\mathbb{R}^{\boldsymbol{n}}$. If \mathbf{L} is given by the $n \times n$ matrix $\mathrm{A}=\left(\boldsymbol{a}_{i, j}\right)$ and $\mathrm{v}=\left(\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{\boldsymbol{n}}\right)$, then one has the following expression for $\mathbf{y}=\mathbf{T}(\mathbf{x})$ in terms of coordinates:

$$
y_{i}=a_{i, 1} x_{1}+\ldots+a_{i, n} x_{n}+b_{i}
$$

Let DT be the derivative matrix whose $(\boldsymbol{i}, \boldsymbol{j})$ entry is given by

$$
\frac{\partial y_{i}}{\partial x_{j}}
$$

(a) Show that the $(\boldsymbol{i}, \boldsymbol{j})$ entry of DT is equal to $\boldsymbol{a}_{i, j}$.
(b) If T_{1} and T_{2} are affine transformations of \mathbb{R}^{n}, explain why $\mathbf{D}\left(\mathbf{T}_{1} \circ \mathbf{T}_{2}\right)$ is the matrix product $\mathbf{D}\left(\mathbf{T}_{1}\right) \mathbf{D}\left(\mathbf{T}_{2}\right)$. [Hint: Expand the composite $\mathbf{T}_{1} \circ \mathbf{T}_{2}$]
(c) Explain why \mathbf{T} is a translation if and only if $\mathbf{D}(\mathbf{T})$ is the identity matrix.
(d) If \mathbf{T} is a translation and \mathbf{S} is an arbitrary affine transformation, prove that the composite $\mathbf{S}^{\mathbf{- 1}} \circ \mathbf{T} \mathbf{S}$ is a translation. What is its value at the vector $\mathbf{0}$?
9. The vertical reflection $\mathbf{S}(\boldsymbol{c})$ about the horizontal line $\boldsymbol{y}=\boldsymbol{c}$ in $\mathbb{R}^{\mathbf{2}}$ is the affine map defined by $\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)=\left(\boldsymbol{x}_{1}, 2 \boldsymbol{c}-\boldsymbol{x}_{2}\right)$. Show that $\mathbf{S}(\boldsymbol{c})$ sends the horizontal line $\boldsymbol{y}=\boldsymbol{c}$ into itself and interchanges the horizontal lines $\boldsymbol{y}=2 \boldsymbol{c}$ and $\boldsymbol{y}=\mathbf{0}$. Prove that the composite of two vertical reflections $\mathbf{S}(\boldsymbol{a}) \mathbf{S}(\boldsymbol{b})$ is a translation, and the composite of three vertical reflections $\mathbf{S}(\boldsymbol{a}) \mathbf{S}(b) \mathbf{S}(\boldsymbol{c})$ is a vertical reflection $\mathbf{S}(d)$; evaluate \boldsymbol{d} explicitly. [Hints: For the twofold composite, what is the derivative matrix? Also, explain why the twofold composite $\mathbf{S}(\boldsymbol{a}) \mathbf{S}(\boldsymbol{b})$ sends $(\mathbf{0}, \mathbf{0})$ to a point whose first coordinate is equal to zero.]
10. Let \mathbf{A} be the orthogonal matrix

$$
\left(\begin{array}{rr}
\cos \theta & \sin \theta \\
\sin \theta & -\cos \theta
\end{array}\right)
$$

where $\boldsymbol{\theta}$ is a real number. Show that there is an orthonormal basis $\{\mathbf{u}, \mathbf{v}\}$ for $\mathbb{R}^{\mathbf{2}}$ such that $\mathbf{A u}=\mathbf{u}$ and $\mathbf{A v}=-\mathbf{v}$.
11. Let \mathbf{A} be the orthogonal rotation matrix

$$
\left(\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

where θ is a real number which is not an integral multiple of 2π, let $\mathbf{b} \in \mathbb{R}^{2}$, and let \mathbf{T} be the Galilean transformation $\mathbf{T}(\mathbf{x})=\mathbf{A x}+\mathbf{b}$. Prove that there is a unique vector \mathbf{z} such that $\mathbf{T}(\mathbf{z})=\mathbf{z}$. [Hint: \mathbf{A} is not the identity matrix, and in fact $\mathbf{A} \mathbf{- I}$ is invertible; prove the latter assertion.]

II. 5 : Euclidean parallelism

1. Suppose that \mathbf{L} and \mathbf{M} are skew lines in $\mathbb{R}^{\mathbf{3}}$. Prove that there is a unique plane \mathbf{P} such that \mathbf{L} is contained in \mathbf{P} and \mathbf{M} is parallel to (i.e., disjoint from) \mathbf{P}. [Hints: Write \mathbf{L} and \mathbf{M} as $\mathbf{x}+\mathbf{V}$ and $\mathbf{y}+\mathbf{W}$, where \mathbf{V} and \mathbf{W} are $\mathbf{1}-$ dimensional vector subspaces. Since \mathbf{L} and \mathbf{M} are not parallel, we know that \mathbf{V} and \mathbf{W} are distinct. Let \mathbf{U} be the vector subspace $\mathbf{V}+\mathbf{W}$. Why is \mathbf{U} a $\mathbf{2}$ - dimensional subspace? Set $\mathbf{P}=\mathbf{x}+\mathbf{U}$ and verify that \mathbf{P} has the desired properties; in particular, if \mathbf{M} and \mathbf{P} have a point \mathbf{z} in common, note that $\mathbf{M}=\mathbf{z + W}$ and $\mathbf{P}=$ z+U.]
2. Suppose that \mathbf{P} and \mathbf{Q} are parallel planes in $\mathbb{R}^{\mathbf{3}}$, and let \mathbf{S} be a plane which meets each of them in a line. Prove that the lines of intersection $\mathbf{S} \cap \mathbf{P}$ and $\mathbf{S} \cap \mathbf{Q}$ must be parallel.
3. Suppose that we are given three distinct planes \mathbf{S}, \mathbf{P} and \mathbf{Q} in $\mathbb{R}^{\mathbf{3}}$ such that \mathbf{S} is parallel to both \mathbf{P} and \mathbf{Q}. Prove that \mathbf{P} and \mathbf{Q} are parallel. [Hint: Through a given point \mathbf{x} not on \mathbf{S}, how many planes are there that pass through \mathbf{x} and are parallel to \mathbf{S} ?]
4. Suppose that \mathbf{v} and \mathbf{w} are linearly independent vectors in $\mathbb{R}^{\mathbf{3}}$, and let \mathbf{z} be a third vector in $\mathbb{R}^{\mathbf{3}}$. Let \boldsymbol{a} and \boldsymbol{b} be real numbers. Prove that the function $\mathrm{f}(\boldsymbol{a}, \boldsymbol{b})=|\mathrm{z}-\boldsymbol{a} \mathrm{v}-\boldsymbol{b} \mathrm{w}|$ takes a minimum value when $\mathbf{z}-\boldsymbol{a v}-\boldsymbol{b} \mathbf{w}$ is perpendicular to both \mathbf{v} and \mathbf{w}. [Hint: Take an orthonormal basis \mathbf{e}, \mathbf{f} for the span of \mathbf{v} and \mathbf{w}, and let $\mathbf{Q}(\mathbf{z})=\mathbf{z}-\langle\mathbf{z}, \mathrm{e}\rangle \mathrm{e}-\langle\mathbf{z}, \mathrm{f}\rangle \mathbf{f}$. Why is \mathbf{z} perpendicular to e, f, \mathbf{v}, and \mathbf{w} ? Find the length squared of the vector

$$
\mathrm{z}-s \mathrm{e}-t \mathrm{f}=\mathrm{Q}(\mathrm{z})-[s-\langle\mathrm{z}, \mathrm{e}\rangle] \mathrm{e}-[t-\langle\mathrm{z}, \mathrm{f}\rangle] \mathrm{f}
$$

using the fact that \mathbf{e}, \mathbf{f} and $\mathbf{Q (z)}$ are mutually perpendicular. Why is the (square of the) length minimized when the coefficients of \mathbf{e} and \mathbf{f} are zero? Why is the minimum value of $g(s, t)=|z-s e-t f|$ equal to the minimum value of $f(a, b)=$ $|\mathrm{z}-a \mathrm{v}-b \mathrm{w}|$?]
5. Suppose that we have two skew lines in $\mathbb{R}^{\mathbf{3}}$ of the form $\mathbf{0 a}$ and bc. Let \mathbf{x} and \mathbf{y} be points of $\mathbf{0 a}$ and $\mathbf{b c}$ respectively. Prove that the distance $\boldsymbol{d}(\mathbf{x}, \mathbf{y})=$ $|\mathbf{x}-\mathbf{y}|$ is minimized when $\mathbf{x}-\mathbf{y}$ is perpendicular to \mathbf{a} and $\mathbf{c}-\mathbf{b}$. (In other words, the shortest distance between the two skew lines is along their common perpendicular.)
6. Let $\mathbf{W}, \mathbf{X}, \mathbf{Y}, \mathbf{Z}$ be four points in $\mathbb{R}^{\mathbf{3}}$, no three of which are collinear, let \mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D} be the midpoints of $\mathbf{W X}, \mathbf{X Y}, \mathbf{Y Z}$, and $\mathbf{Z W}$, and suppose that we have $\mathbf{A B} \neq$ $C D$ and $A D \neq B C$. Prove that $A B|\mid C D$ and $A D| \mid B C$.
7. Let $\angle A B C$ be given, and let D lie in the interior of $\angle A B C$. Prove that D lies on an open segment (XY), where $X \in$ (BA and $Y \in$ (BC. [Hint: The proof requires the use of Playfair's Axiom. In Unit \mathbf{V} there is an exercise which shows that result is not necessarily true if Playfair's axiom does not hold.]

