SUPPLEMENTARY EXERCISES ON AFFINE EQUIVALENCE

T1. Let K be a nonempty convex subset of \mathbb{R}^2 , and let L be a line in \mathbb{R}^2 such that $K \cap L$ is empty. Prove that all the points of K lie on the same side of L. [*Hint:* Assume that K contains points on both sides of L and derive a contradiction.]

T2. Let **a**, **b**, **c** be noncollinear points in \mathbb{R}^2 , and let *F* be an affine transformation of \mathbb{R}^2 . Prove that *F* sends $\angle \mathbf{abc}$ to $\angle F(\mathbf{a})F(\mathbf{b})F(\mathbf{c})$. [*Hint:* By Corollary II.4.8 *F* maps rays to rays, and we also know that if *X* and *Y* are subsets of \mathbb{R}^2 then *F* maps the union $X \cup Y$ to $F[X] \cup F[Y]$.]

T3. Assume the setting of the preceding exercise, and prove that F maps the exterior of $\angle abc$ to the exterior of $\angle F(\mathbf{a})F(\mathbf{b})F(\mathbf{c})$. [*Hint:* By Theorem 12 in affine-convex.pdf and a previous exercise we know that F maps the angle and its interior to themselves.]

T4. If *L* and *M* are parallel lines in \mathbb{R}^2 , then by Exercise **T1** we know that all points of *L* lie on the same side of *M* and all points of *M* lie on the same side of *L*. Define the *strip between L* and *M* to be the set of points **x** such that **x** and *L* are the same side of *M* and **x** and *M* are the same side of *L*.

(i) Prove that the strip between L and M is convex and nonempty. Specifically, prove that if $A \in L$ and $B \in M$, then the midpoint C of (AB) lies in this set.

(*ii*) Prove that if F is an affine transformation of \mathbb{R}^2 and L and M are parallel lines in \mathbb{R}^2 , then F maps the strip between L and M to the strip between F[L] and F[M]. [Hint: Apply Theorem 11 in affine-convex.pdf.]

T5. Using the idea for the solution to Exercise **T1**, prove the following uniqueness result for the half-planes in the Plane Separation Postulate:

Let L be a line in \mathbb{R}^2 , and suppose that $\{H_1, H_2\}$ and $\{K_1, K_2\}$ are subsets of $\mathbb{R}^2 - L$ which satisfy the conditions in the Plane Separation Postulate. Namely, each subset is nonempty and convex, we have $H_1 \cap H_2 = K_1 \cap K_2 = \emptyset$, $H_1 \cup H_2 = K_1 \cup K_2 = \mathbb{R}^2 - L$, and for C = HorK, if $\mathbf{x} \in C_1$ and $\mathbf{y} \in C_2$, then $(\mathbf{xy}) \cap L \neq \emptyset$. THEN either $H_1 = K_1$ and $H_2 = K_2$ or else $H_1 = K_2$ and $H_2 = K_1$.