STILL MORE EXERCISES FOR SECTION II. 1

The following exercises deal with consequences of the incidence axioms. Assume that $(\mathbb{S}, \mathcal{P}, \mathcal{L})$ is a system which satisfies these axioms.

J1. Show that the axioms do not imply that every line or plane must have infinitely many points. [Hint: Take \mathbb{S} to be a set with four points, let \mathcal{P} and \mathcal{L} be all subsets with two and three points respectively, and verify that this system satisfies all the axioms even though points and lines are finite sets.]

J2. Prove that if L and M are distinct coplanar lines, then there is a unique plane containing them. [Hint: The crucial point is that there is only one such plane.]

J3. \quad Suppose that the three distinct points A, B, C lie on the planes P and Q, where $P \neq Q$. Prove that the set $\{A, B, C\}$ is collinear.

J4. If P_{1}, P_{2} and P_{3} are distinct planes, show that their intersection is either the empty set, a single point or a line. Give examples in \mathbb{R}^{3} for which the intersections are of each (mutually exclusive) type.

