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Exercises for Unit I I I   

(Basic Euclidean concepts and theorems) 
 

Default assumption: 
 

All points, etc. are assumed to lie in  RRRR
2
  or  RRRR

3
. 

 

 I I I.1 : Perpendicular lines and planes 
 
 
1.  Suppose that  P,  Q  and  T  are three distinct planes, and suppose that they 
have at least one point in common but do  not  have a line in common.  Prove that they 

have  exactly  one point in common. 
 

2.  Suppose  P  and  Q  are two planes which intersect in the line  L  =  x + U, 

where the  1 – dimensional vector subspace  U  spanned by the unit vector  u.  Express 

these planes as translates of two dimensional subspaces, with  P  =  x + V  and  Q  =  

x + W.   Let  a  and  b  be unit vectors in  V  and  W  respectively such that  a  and  b  
are perpendicular (or normal ) to  u.    Prove that the  (cosine of the)  angle   

∠∠∠∠(x + a) x (x + b)  is equal to the (cosine of the) angle between the normals to  P  and  

Q; note that these normals are given by  a × u  and  b × u.  [ Hint :  Express the dot 
product of the normals in terms of the dot product of  a  and  b.  Apply the formula for   

(v × w) ⋅⋅⋅⋅ (y × z)  derived in Section  I. 2. ] 
 

 
 

Note.  If we let  [L(x + a)  denotes the union of  L  with the set of all points on the same 

side of  P  as  x + a, and we let  [L(x + b)  denotes the union of  L  with the set of all 

points on the same side of  Q  as  x + b, then the union of  [L(x + a)  and  [L(x + b)  is 
an example of a  dihedral angle, and the result of the exercise states that two standard 

methods for defining the measure of this dihedral angle yield the same value. 
 

3.  Let  X  be a point in the plane  P.  Prove that there is a pair of perpendicular lines 
L  and  M  in  P  which meet at  X  and that there is no line  N  in  P  through  X  which is 
perpendicular to both  L  and  M.  [ Hint :  Try using linear algebra. ] 
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4.  Assume the setting of the previous exercise, but also assume that  P  is 

contained in  RRRR
3
.   Prove that there is a unique line  K  through  X  which is 

perpendicular to both  L  and  M. 
 

5.  Let  L  and  M  be lines which intersect at  Y, and for each  X  in  L – { Y },  let  

MX  denote the foot of the unique perpendicular from  X  to  M.   Prove that for each 

positive real number  a  there are exactly  two  choices of  X  for which  d(X, MX )  =  a.  

[ Hint :  Parametrize the line in the form  Y + t V  for some nonzero vector v, let  W  be a 

nonzero vector such that  L  and  M  lie in the plane determined by  Y,  Y + V,  and   

Y + W  with  W  perpendicular to  V, and express  d(X, MX )  in terms of  t  and the 

length of  W. ] 
 

 

I I I.2 : Basic theorems on triangles 

 

 

1.   (Review of topics from Section II.4) Suppose that we are given  ����ABC  and  

����DEF, and let  G  and  H  denote the midpoints of  [BC]  and  [EF]  respectively.  Prove 

that  ����ABC  ≅≅≅≅  ����DEF  if and only if  ����GAB  ≅≅≅≅  ����HDE. 

 
 

2. Suppose that ����ABC is an isosceles triangle with  d(A, B)  =  d(A, C), and  D  is 

a point of  (BC)  such that  [AD  bisects  ∠∠∠∠ BAC.  Prove that  D  is the midpoint of  (BC) 

and that  |∠∠∠∠ ADB|  =  |∠∠∠∠ ADC|  =  90°°°°. 
 

3. Suppose we are given isosceles ����PRL  with  d(R, P)  =  d(L, P).  Let  S  and  T  

be points on  (RL)  such that  R∗S∗T,  d(R, S)  =  d(L, T),  and  d(P, S)  =  d(P, T).  

Prove that  ����RTP  ≅≅≅≅  ����LSP  and  |∠∠∠∠ PSR|  =   |∠∠∠∠ PTL|. 
 

4. Suppose we are given two lines  AE  and  CD, and suppose that they meet at a 

point  B  which is the midpoint of  [AE]  and  [CD].  Prove that  AC || DE.   
 

5. Suppose that we are given lines  AE, BD  and  FG  which contain a common 

point  C  and also satisfy  A∗F∗B,  B∗C∗D,  and  D∗G∗E.  Suppose also that  d(A, C)  

=   d(E, C)  and  d(B, C)  =  d(C, D).  Prove that  ����ABC  ≅≅≅≅  ����EDC  and  ����AFC  ≅≅≅≅  
����EGC.   [ Hint :   Part of the proof is to show that the betweenness properties  A∗C∗E 

and  F∗C∗G, suggested by the drawing below, are true. ] 
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6. Suppose that  ����ABC  is an isosceles triangle with  d(A, B)  =  d(A, C),  and let  

D  and  E  be points of  (AB)  and  (AC)  respectively such that  d(A, D)  =  d(A, E).  

Prove that  BC || DE. 
 

7. Suppose that we are given  ����ABC, and let  D  be a point in the interior of 

����ABC  such that  [AD  bisects ∠∠∠∠ CAB,  [BD  bisects  ∠∠∠∠ CBA, and  |∠∠∠∠ ADB|  =  

130°°°°.  Find the value of  |∠∠∠∠ ACB|.   
 

8. Suppose that we are given points  A, B, C  such that  A∗B∗C, and let  DE  ≠  

AC  such that  D∗B∗E,  CE ⊥⊥⊥⊥ AC,  and  DE ⊥⊥⊥⊥ AD.  Prove that  |∠∠∠∠ DAB|  =  |∠∠∠∠ BEC|. 
 

9.  Prove the following result due to Heron of Alexandria:  Let  P  be a plane, let  L  
be a line, let  A  and  B  be points on the same side of  L  in  P, and let  C  be the mirror 
image of  B  with respect to  L  (formally, choose  C  so that  L  is the perpendicular 

bisector of  [BC] ).  Define a positive real valued function  f  on  L  by  f(X)  =  d(A, X) + 

d(X, B) .  Then the minimum value of  f(X)  occurs when  X  lies on  (AC).   
 

 
 

[Hint:  Why is  d(X, B)  =  d(X, C),  and how is this relevant to the problem? ] 
 

10.  Given  ����ABC, let  X,  Y  and  Z  be points on the open segments  (AB),  (BC)   

and  (AC)  respectively.  Prove that the sum of the lengths of the sides of  ����ABC  is 

greater than the sum of the lengths of the sides of  ����XYZ.  
 

 
 

11.  Given  ����ABC, let  D  and  E  be the midpoints of  (BC)  and  (AC)  respectively.  

Prove that  d(D, E)   =   ½  d(A, B). 
 

12.  Given  ����ABC, let  D  be the midpoint of  (BC).  Prove that  d(A, D)  <    

½ [ d(A, B)  +  d(A, C) ].  [ Hint :  Let  F  be the midpoint of  (AB), and apply the 
previous exercise. ] 
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13.  Given  ����ABC, let  X  be a point in the interior of  ����ABC.  Prove that   

|∠∠∠∠AXB|  +  |∠∠∠∠BXC|  +  |∠∠∠∠CXA|   =   360°. 
 

 
 

[ Hint :  There is one large triangle in the picture, and it is split into three smaller ones; 

the angle sum for each triangle is equal to 180°. ] 
 

14.  Prove the Sloping Ladder Theorem:  Suppose we are given right triangles  

����ABC  and  ����DEF  with right angles at  C  and  F  respectively such that the 

hypotenuses satisfy  d(A, B)  =  d(D, E)  and  d(E, F)  <  d(B, C).  Then  d(A, C)  <  

d(D, F). 
 

 
 

15.  In ����ABC, suppose that  d(A, C)  <  d(B, C)  and  E  is the midpoint of  [AB].  

Is  ∠∠∠∠CEA  acute  (measurement less than 90°)  or  obtuse  (measurement greater than 

90°)?  Why? 
 

16.  Using the strong triangle inequality for noncollinear triples of points, determine 
which of the following triples cannot be the set of lengths for the sides of a triangle. 
 

(a) 1,  2,  3 

(b) 4,  5,  6 

(c) 15,  15,  1 

(d) 5,  1,  8 
 

17.  Two sides of a triangle have lengths  10  and  15.  Between what two numbers 
must the length of the third side lie?  
 

18.  Let  n  be a positive integer.  Explain why there is a right triangle  ����ABC  with a 

right angle at  C  such that   ( i )   the sides all have integral lengths,  ( ii )   d(A, B)  =   

n + 1  and  d(A, B)  =  n,  provided the odd integer  (2n + 1)  is a perfect square, and 

conclude that there are infinitely many values of  n  for which there is a right triangle  
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����ABC  with right angle at  C  satisfying  ( i )  and  ( ii ).  Find all n   <  100 for which 

such triangles exist.   [ Hint :  Recall that the sum of the first  k  odd (positive) integers 

is equal to  k 

2
. ] 

 

19.  Prove the  Hinge Theorem:  Given triangles  ����ABC  and  ����ABD  which satisfy 

d(A, C)  =  d(A, D),  then  d(B, C)  <  d(B, D)  if and only if  |∠∠∠∠CAB|  <   |∠∠∠∠DAB|. 

 
 

20.  Assume that we are given  ����ABC  such that the sides opposite vertices  A, B, C 

have lengths  a,  b,  c  and the vertex angles at  A,  B,  C  have measures  αααα,  ββββ,  γγγγ 

respectively.  Then several results of this section show that  a,  b,  c  and  αααα,  ββββ,  γγγγ  
satisfy certain restrictions.  For example, we have [1]  the sum of any two lengths is 

greater than the third, [2]  b  =  c  if and only if  γγγγ  =  ββββ     and similarly if the roles of the 

variables are interchanged, [3] αααα  +  ββββ  +  γγγγ   =   180°, [4]  c
2
   <   a

2
  +  b2

  if and 

only if  γγγγ   <   90°.   Determine which of these reasons imply that one cannot construct a 

triangle whose measures are partially given as follows (in any given example more than 
one reason might be needed): 
 

(a)     a  =  8,   b  =  c  =  6,    ββββ  =  γγγγ  =  60°.  
 

(b)     a  =  6,   b  =  7,   c  =  9,    γγγγ  =  93°.  
 

21.  In Section I I.4  we noted that there is no general Side – Side – Angle (SSA) 
congruence theorem in geometry.  One easy way to construct an explicit 

counterexample is to start with an isosceles right triangle  ����ABC  with a right angle at 

the vertex  B, take the point  D  such that  A∗C∗D  and  d(B, C)  =  d(C, D),  and 

consider the triangle correspondence ����BDC  ↔↔↔↔  ����BDA, which satisfies the  SSA  
condition.  Find the measures of   ∠∠∠∠ CBD,   ∠∠∠∠ ABD,   ∠∠∠∠ DAB  and   ∠∠∠∠ DCB. [ Hint:  

Why is  ����BCD  isosceles?] 
 

 

I I I.3 : Convex polygons 

 

 
1. Suppose that  A,  B,  C,  D  form the vertices of a convex quadrilateral, and let  
P,  Q,  R,  S  be the midpoints of  [AB],  [BC],  [CD]  and  [DA]  respectively.  Prove that  
PQ || RS  and  QR || PS.   [ Hint :  In each case, the lines are parallel to one of the 
diagonals of the original convex quadrilateral.] 
 

2. Suppose that  A,  B,  C,  D  form the vertices of a convex quadrilateral, and let  
P,  Q,  R,  S  be the midpoints of  [AB],  [BC],  [CD]  and  [DA]  respectively.  Prove that  
[PR]  and  [QS]  meet at their common midpoint.   [ Hint :  Apply the preceding exercise.] 
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3. Suppose that  A,  B,  C,  D form the vertices of a parallelogram, and suppose 
that  E  and  F  are the midpoints of  [AB]  and  [CD]  respectively.  Prove that  E,  B,  F,  
D  form the vertices of a parallelogram.  [ Hint :  There is a simple proof using vectors.] 
 

 
 

4. Suppose that  A,  B,  C,  D  form the vertices of a trapezoid, with  AB || CD, and 

assume that  d(A, D)  =  d(C, D).  Prove that  [AC  bisects  ∠∠∠∠ DAB.  
 

5. Suppose that  A,  B,  C,  D form the vertices of a parallelogram, and suppose 

that  E  and  F  are points of  (BD)  such that  B∗F∗E  and  d(B, F)  =  d(D, E).  Prove 

that  AE || CF. 
 

 
 

6.  A parallelogram is a rhombus if its four sides have equal length.  Prove that a 
parallelogram is a rhombus if and only if its diagonals are perpendicular to each other. 
 

7.  Suppose that  A,  B,  C,  D form the vertices of a square, and let  E  be a point in 

the square’s interior such that  ����ABE  is an equilateral triangle.  Find  |∠∠∠∠EDC|  and 

|∠∠∠∠ECD|.   
 

 
 

8.  Prove a  converse to Proposition I I I.3.1:  If  A,  B,  C,  D are coplanar points 
such that no three are collinear, then they form the vertices of a convex quadrilateral if 
the open diagonal segments  (AC)  and  (BD)  have a point in common. 
 

9.  Suppose that  A,  B,  C,  D are points in  RRRR
3
  such that no three are collinear.  

Prove that they form the vertices of a convex quadrilateral if and only if  D  lies in the 

interior of  ∠∠∠∠ ABC  and  D and  B  lie on opposite sides of  AC.  [ Hint :  Recall that they 
form the vertices of a convex quadrilateral if and only if the open diagonal segments  
(AC) and  (BD)  have a point in common. ] 
 

10.  Suppose that  A,  B,  C,  D  are points in  RRRR
2
   such that no three are collinear, 

and write  D  as an affine combination  D  =   xA  +  yB  +  zC,  where   
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x  +  y  +  z  =  1.   Using the preceding exercise, show that  A,  B,  C,  D  form the 

vertices of a convex quadrilateral if and only if  x  and  z  are positive and  y  is negative.   
 

11.  Suppose that  A,  B,  C,  D  are points in  RRRR
2
  such that no three are collinear, 

and suppose that  AB || CD.  Prove that  A,  B,  C,  D  form the vertices of a convex 

quadrilateral if and only if  C – D  is a positive multiple of  B – A (such a quadrilateral is 

a  parallelogram  if  C – D  =  B – A  and it is a  trapezoid  in the other cases).   
 

Standing hypotheses:  In Exercises 12 – 16 below, points A, B, C, D in  

RRRR
2
  form the vertices of a convex quadrilateral such that AB || CD.  The 

lengths of  C – D  and  B – A  will be denoted by  x  and  y  respectively. 
 

12.  Prove that the line joining the midpoints of  [AD]  and  [BC]  is parallel to  AB  

and  CD, and its length is  ½ (x  +  y) .  Also, prove that the line joining the midpoints of 

the diagonals  [AC]  and  [BD]  is parallel to  AB  and  CD. 
 

13.  Suppose that  x  <  y, and let  E  be the unique point on  (AB  such that  d(A, E)  

=   x.   Prove that  E  lies on  (AB)  and  AD || CE  (hence  A,  E,  C,  D  form the 
vertices of a parallelogram). 

 
 

14.  Suppose again that  x   <   y,  and let  E  be as in the preceding exercise.  Prove 
that the following are equivalent: 
 

(1)   d(A, D)   =   d(B, C) 
 

(2) |∠∠∠∠ DAB|   =   |∠∠∠∠ CBA| 
 

(3) |∠∠∠∠ ADC|   =   |∠∠∠∠ BCD| 
 

A trapezoid satisfying one (and hence all) of these conditions is called an  isosceles 
trapezoid. 
 

15.  Suppose that  A,  B,  C,  D  as above are the vertices of an isosceles trapezoid.  
Prove that the line joining the midpoints of  [AB]  and  [CD]  is the perpendicular bisector 
of these segments.  

 
 

16.  Suppose we are given an isosceles trapezoid as in the preceding exercise such 

that  A  =  (– ½ y, 0),   B  =  (½ y, 0),   C  =  (½ x, h),  and  D  =  (–½ x, h),  where  

h   >   0.  Prove that the open diagonal segments  (AC)  and  (BD)  meet at a point   

(0, k)  on the  y – axis, and express   k/(h – k)  in terms of  x  and  y.  
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17.   Suppose that we are given  A,  B,  C,  D  in  RRRR
2
  whose coordinates are given by   

A  =  (p, 0),   B  =  (0, q),   C  =  (– p, 0)  and   D  =  (0, – q),  where  p,  q   >   0.  
 

(a)  Prove that A,  B,  C,  D  form the vertices of a rhombus.   [ Hint :  First of all, show 

that   d(A, B)  =  d(B, C)  =  d(C, D)  =  d(D, A).  Next, note that   A – B   =   D – C 

and use this to show that  AB || CD.   Finally, modify the preceding step to show that  
AD || BC. ]  
 

(b)  Prove that the distance between the parallel lines  AB  and  CD  is equal to the 
distance between the parallel lines  AD  and  BC.   [ Hint :   Let  T  be the orthogonal 

linear transformation defined by  T (x, y)   =   (x, – y),  and view  T  as an isometry of  

RRRR
2
.  What are the images of  A,  B,  C,  D  under  T?  What are the images of the lines  

AB,  AD,  BC  and  CD  under  T?   Using these conclusions, prove that if  F  ∈∈∈∈  AB  

and  G  ∈∈∈∈  CD  are such that the line  FG  is perpendicular to both  AB  and  CD, then  

T(F)  ∈∈∈∈  AD  and  T(G)  ∈∈∈∈  BC  are such that the line  T(F)T(G)  is perpendicular to both  

AD  and  BC.  Why will the result follow from this? ] 
 

 
  

18.  Given a square whose sides all have length  a,  it is possible to obtain a regular 
octagon by cutting away four isosceles right triangles at the edges as suggested by the 

figure below.  Suppose that  b  is the length of the sides of the regular octagon 

constructed in this fashion.  Express the value of  b  in terms of  a.   [ Hint :  Let  c  be 
equal to the lengths of the legs of the isosceles right triangles that are removed to form 

the octagon.  Find two equations relating  a,  b  and  c.]  
 

 
 

19.   Suppose that we are given four points  A,  B,  C,  D  in  RRRR
2
  which form the vertices 

of a convex quadrilateral (in the given order).  Let  E  be a point on  (CD), and let  F  be 



24 

 

the foot of the perpendicular from  E  to  AB.  Prove that if  F  lies on  (AB),  then  (EF)  
is contained in the interior of the convex quadrilateral  ABCD. 

 
 

20.   Prove an analog of Pasch’s Theorem for convex quadrilaterals:  Suppose that  A,  

B,  C,  D  in  RRRR
2
  form the vertices of a convex quadrilateral and  L  is a line in  RRRR

2
  

which contains exactly one point of  (AB).   Prove that either  L  contains one of the 
vertices  C,  D  or else it contains a point from one of  (BC),  (CD)  or  (AD). 

 

21.   Suppose we are given four points  A 1,  A 2,  A 3,  A 4  in  RRRR
2
  such that no three are 

collinear, let  A 5  =   A1, and let  L i  =  A i A i + 1,  so that exactly two of the given four 

points are on the line  L i  and the other two are not.  Prove that for at least one choice of  

i  the “remaining two” points of  { A 1, A 2, A 3, A 4 }  both lie on the same side of  L i. 
 

22.   A convex quadrilateral ABCD is said to be a  convex kite  (or  deltoid)  if   d(A, B)  

=  d(A, D)  and   d(C, B)  =  d(C, D).   Prove that the line of the diagonal  AC  in such 
a quadrilateral is the perpendicular bisector of the diagonal segment  [BD],  and also 

prove that  |∠∠∠∠ABC|  =   |∠∠∠∠ADC|.   Also, prove that  |∠∠∠∠BCD|  =   |∠∠∠∠DAB| if and only 
if convex quadrilateral  ABCD  is a rhombus.   
 

 

I I I.4 : Concurrence theorems 

 

 

1.  Let  ����ABC be a triangle in  RRRR
2
.  Define a real valued function  g  on  RRRR

2 
  by  

g(X)   =   d(X, A) 

2
  +  d(X, B)

 2
  +  d(X, C) 

2
.  Prove that  g(X)  takes a minimum value 

when  X  is the centroid of  ����ABC.  
 

2.  Suppose that the circumcenter  V  of  ����ABC  lies in the interior of that triangle.  

Prove that all three vertex angles of that triangle are acute (i.e., measure less than 90 °).  

[ Hint :  Consider the three triangles  ����VBC,  ����VAB,  ����VAC.   Explain why they are 

isosceles, and show that   |∠∠∠∠VBC|  +  |∠∠∠∠VAB|  +  |∠∠∠∠VAC|   =  90°. ]    
 

3.  Suppose we have a right triangle with a right angle at  B, and let  V  be the 

midpoint of  [AC].  Explain why  d(V, B)  =  d(A, C),  so that  V  is the circumcenter of 

the triangle.   [ Hint:  Using the final result in Section I.4 of the notes, show that the foot 
of the perpendicular from  V  to  BC  is the midpoint  E  of the segment  [BC].  Why does 

this imply that  ����VBC  isosceles? ] 
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4.  Suppose that we have a triangle  ����ABC  such that the circumcenter  V  lies in 

the interior of the triangle, and let  R  be the radius of that circle.  Let  |∠∠∠∠BAC| =  ββββ.  
Prove the following strong version of the Law of Sines:  
 

Rb ⋅⋅⋅⋅
====

ββββ

2

1sin
 

 

 

 

[ Hint :  Let  D  be the midpoint of  [AC], and find  d(V, A)  and  |∠∠∠∠ VAC|  in terms of  b,   

ββββ  and  R .  What does this imply about  d(A, D)   =   ½  b ?  You might want to use some 

of the conclusions obtained in the solution to Exercise 2. ] 
 

Note.  The solution to Exercise 3 implies similar results for triangles 
with one right angle, and in fact the same conclusion holds if one of the 
angles in the triangle is obtuse (the argument is similar but slightly more 
complicated).   

 

5.  The following instructions were found on an old map: 
 

Start from the right angle crossing of King’s Road and Queen’s Road.   
Proceed due north on King’s Road and find a large pine tree and then a 
maple tree.  Return to the crossroads.  Due west on Queen’s Road there 
is an elm, and due east on Queen’s Road there is a spruce.  One magical 

point is the intersection of the elm – pine line with the maple – spruce line.  

The other magical point is the intersection of the spruce – pine line with 

the elm – maple line.  The treasure lies where the line through the 
magical points meets Queen’s Road. 
 

A search party found the elm 4 miles from the crossing, the spruce 2 miles from the 

crossing, and the pine 3 miles from the crossing, but they found no trace of the maple.  
Nevertheless, they were able to locate the treasure from the instructions.  Show how 
they were able to do this.    [ Hints:  The treasure was eight miles east of the crossing.  
Probably the best way to do this problem is to set up Cartesian coordinates with King’s 

Road and Queen’s Road as the coordinate axes. ] 
 

6.  Find the circumcenter of the triangle in the coordinate plane with vertices  (1, 1),  

(5, 5)  and  (4, 0). 
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7.  Find the orthocenter of the triangle in the coordinate plane with vertices  (± 1, 0)  

and  (0, 2).     [ Hint:  The line  L  joining  (1, 0)   and  (0, 2)  has equation  y  +  2x  =  

2.  Find the equation of the line  M  which is perpendicular to  L  and passes through   

(1, 0).  Explain why the orthocenter is the point where  M  meets the   y – axis. ] 
 

Note.  For both Exercises  6  and  7, the numerical answers for the coordinates 

are expressible in relatively neat terms.   The same applies to Exercise  9. 
 

8.  Find the incenter of  ����ABC  if  A  =  ( 1, 0 ),   B  =  ( 0, 0 ),  and  C  =   

( 0, sqrt(3) );  the conditions of the problem imply that there is a right angle at  B  and a  

60°  angle at  C.      [ Hint:  The bisector for the angle at  B  has equation   y  =  x.  Find 

the equation of the line which bisects the angle at  A. ] 
 

9.  Find the circumcenter of the triangle in  RRRR
2
  with vertices  (0, 0),  (3, 4),  and   

(6, 0),  and determine the circumradius of this triangle. 
 

10.  Given a  120° – 30° – 30°  isosceles triangle  ����ABC, determine whether each 
of the circumcenter and orthocenter lies inside the triangle, on one of the vertices, on 
one of the sides between two vertices, or outside the triangle.  You may assume that the 

legs of the isosceles triangle are  [AB]  and  [AC], where  A  lies on the   y – axis and  

[BC]  is contained in the  x – axis. 
 

11.  Suppose that we are given three noncollinear points  a,  b,  c  in  RRRR
2
   or  RRRR

3
.  

Prove that the angle bisector for  ∠∠∠∠ a b c  is the ray  [bx,  where  x  =  b + y  and  y  is 

given by 
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[ Hint:    Let  u  and  v  be the unit vectors in the displayed expression, and let  p  =   

b + u  and  q  =  b + v,  so that  ∠∠∠∠ abc   =   ∠∠∠∠ pbq.   Then  x  is the midpoint of  [pq]; 

note that  ���� qbp  is isosceles. ] 
 

12.  Apply the result of the previous exercise to the angle in  RRRR
2   

with  a  =  (3, 4),   

b  =  (0, 0)  and  c  =  (2, 1)  to find a point  x  on the bisector of  ∠∠∠∠ a b c  other than  b, 

and find the slope of the line  bx  (which goes through the origin). 
 

 

I I I.5 : Similarity 

 

 
1.  Prove that an affine transformation which preserves perpendicularity must be a 
similarity transformation. 
 

2.  Let  T  be a similarity transformation of  RRRR
n
  with a ratio of similitude  k  which is  

not  equal to  1.  Prove there is a unique point  z  such that  T(z)  =  z.   [ Hint :  Write 
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T(z)   =   kAz  +  b,  where  A  is given by an orthogonal matrix.  Then the conclusion is 

equivalent to saying that there is a unique  z  such that  (kA – I)  z  =  b.   By linear 

algebra the latter happens if and only if there is no nonzero vector  v  such that  k Av  =  
v.   Assume to the contrary that such a vector exists, and, using the orthogonality of  A, 

explain why the length of the vector on the left side is equal to   k |v|,  and note that the 

length of the vector on the right side is just  |v|.   Why does this yield a contradiction? ]  
 

3.  Let  ����ABC  be a  3 – 4 – 5  right triangle with a right angle at  C  such that  

d(A, C)  =  3,  d(B, C)  =  4,  and  d(A, B)  =  5.  Let  D  be the point on  (BC)  such 

that   [CD  bisects  ∠∠∠∠ACB.  Compute the distances  d(A, D)  and  d(D, B). 
 

 

4.  Suppose we are given  ����ABC, and let  D  ∈∈∈∈  (AB)  be such that  |∠∠∠∠DCA|  =  

|∠∠∠∠ABC|.  Prove that  d(A, C)  is the mean proportional between  d(A, B)  and  d(A, D).   

 
 

5.  Let  ����ABC  be given, and let  Z  be a point on  (AB.  Let  X  and  Y  be points on 
the same side of  AB  as  C  such that  AX, CZ  and  BY are all parallel to each other, 

and also assume that  B∗C∗X  and  A∗C∗Y.  Prove that 
 

.
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6. Suppose that we are given positive real numbers  a1, … , an  and   b1, … , bn  
such that  

1

1

b

a

b

a

i

i
====  

for all  i.  Prove that  
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7. ( i )   Suppose that  ����ABC  and  ����DEF  satisfy  ����ABC  ~  ����DEF  with   

d(B, C)   ≤   d(A, C)   ≤   d(A, B).    Prove that   d(E, F)   ≤   d(D, F)   ≤    d(D, E).     
 

  ( ii )  Suppose that we are given  ����ABC  with d(B, C)   ≤   d(A, C)   ≤   d(A, B)  

and that  (A′′′′, B′′′′, C′′′′)  is a rearrangement of  (A, B, C)  such that  ����ABC  ~ k  ���� A′′′′B′′′′C′′′′.   

Prove that  k  =  1.  [ Hint :   Split the proof into cases depending upon whether  ����ABC 
is equilateral, isosceles with the base shorter than the legs, isosceles with the legs 

shorter than the base, or scalene; i.e., no two sides have equal length. ]    
 

8. Suppose that we are given  ����ABC  ~  ����DEF,  and let  G  and  H  be the 

midpoints of  [BC]  and  [EF]  respectively.  Prove that  ����ABG  ~  ����DEH.  
 

9. Suppose we are given the right triangle ����ABC such that  d(A, B)  =  13,  

d(A, C)  =   5  and  d(B, C)  =  12,  so that  C  is the right angle vertex.  If  X  ∈∈∈∈  (AB)  

is such that  [CX  bisects  ∠∠∠∠ ACB, find  d(A, X). 
 

10.  Suppose we are given an isosceles triangle  ����ABC  in the coordinate plane  RRRR
2
  

whose vertices are given by  A  =  (0, h),  B  =  (– x , 0),  and  C  =  (x, 0).    Then 

the incenter  J  (where the angle bisectors meet) lies on the  y – axis.  Find its   y – 

coordinate.   [ Hint:  What does the Angle Bisector Theorem imply? ] 
 

 

I I I.6 : Circles and classical constructions 

 
 

1. Let  ΓΓΓΓ  be a circle with center  Q,  let  [AB]  and  [CD]  be chords of  ΓΓΓΓ     (so that 
the endpoints lie on the circle), and let  G  and  H  be the midpoints of  [AB]  and  [CD].  

Prove that  d(Q, G)  =  d(Q, H)  if and only if  d(A, B)  =  d(C, D),  and  d(Q, G)  <  

d(Q,H)  if and only if  d(A, B)  >  d(C, D). 
 

2. Let  ΓΓΓΓ  be a circle with center  Q,  and let  L  be a line containing a point  X  on  

ΓΓΓΓ.   Prove that  X  is the only common point of  ΓΓΓΓ  and  L  if and only if  QX  is 
perpendicular to  L.  (These are the usual synthetic descriptions for the tangent line to  

ΓΓΓΓ  at  X.)    [ Hint :   If  L  also meets  ΓΓΓΓ  at another point  Y, explain why  ∠∠∠∠QXY  is 

acute. ]    
 

3. Let  ΓΓΓΓ     be a circle with center  Q,  let  X  be a point in the exterior of  ΓΓΓΓ,  and let  

A  and  B  be two points of  ΓΓΓΓ     which lie on opposite sides of  QX  such that  XA  and  

XB  are tangent to  ΓΓΓΓ     in the sense of Exercise 2.  Prove that  d(X, A)  =  d(X, B).  
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4.  Let  ΓΓΓΓ     be a circle in the plane, let  A  be a point in the interior of  ΓΓΓΓ,,,, and let  X  be 

a point different from  A.  Prove that the ray  [AX  meets  ΓΓΓΓ     in exactly one point.  [Hint :  

By the line – circle theorem, the line  AX  meets  ΓΓΓΓ  in two points  B  and  C.   Why do 
these points lie on opposite rays? ] 
 

5.  (SsA Congruence Theorem for Triangles)  Suppose we have  ����ABC  

and  ����DEF  such that  |∠∠∠∠CAB|  =  |∠∠∠∠FDE|  and  d(B, C)  =   d(E, F)   >   d(A, B)  

=   d(D, E) .  Prove that  ����ABC  ≅≅≅≅  ����DEF   by supplying reasons for the steps listed 

below: 
 

(1)  There is a point  G  ∈∈∈∈  (AC  such that   d(A, G)  =  d(E, F) .   

(2)  ����GAB   ≅≅≅≅   ����FDE .  

(3)  d(B, G)  =  d(E, F)  =  d(B, C) .   

(4)  G  lies on the circle  ΓΓΓΓ     with center  B  and radius  d(B, C) . 

(5)  A  lies in the interior of  ΓΓΓΓ. 

(6)  (AG  meets  ΓΓΓΓ  in exactly one point. 

(7)  C  lies on  (AG  and  ΓΓΓΓ. 

(8)  C  =  G. 

(9)  ����ABC  =  ����ABG,  and  ����ABC   ≅≅≅≅   ����DEF . 
 

6.  Let  ΓΓΓΓ        be a circle whose center is  Q, and let  A  be a point in the same plane 

that is not on  ΓΓΓΓ  and not equal to  Q.  Prove that the distance from  A  to a point  X  on  

ΓΓΓΓ     is minimized for a point  Y  which also lies on the open ray  (QA.  [ Hint :  There are 
two separate cases depending upon whether  A  is in the interior or exterior of the circle.   

In the first case the point  Y  satisfies  Q∗A∗Y, and in the second case it satisfies  

Q∗Y∗A.   Show first that if  W  is the other point on  ΓΓΓΓ ∩∩∩∩ QA,  then the distance is not 

minimized at  W;  this leaves us with the cases where  X  does not lie on  QA.   The 
“larger angle is opposite the greater side” theorem is useful in the two separate cases 

when  X  does not lie on  QA.... ] 
 

7.  Let  ΓΓΓΓ1111      and  ΓΓΓΓ2222      be concentric circles in the same plane, let  Q  be their center, 

and suppose that the radius  p  of  ΓΓΓΓ1111   is less than the radius  q  of  ΓΓΓΓ2222    ....   What is the set 

of all points  X  such that the shortest distance from  X  to  ΓΓΓΓ1111   equals the shortest 

distance from  X   to  ΓΓΓΓ2222    ?   Give a proof that your assertion is correct.   
 

8.  Prove the assertion in the notes about finding a triangle with given  SAS  data:   

Specifically, if we are given positive real numbers  b  and  c,  and  αααα     is a real number 

between  0  and  180,  then there is a triangle  ����ABC  such that   d(A, B)  =  c,   

d(A, C)  =  b,  and  |∠∠∠∠CAB|  =  αααα°....    
 

9.  Prove that a line cannot contain three distinct points of a circle, or equivalently 
that no three points of a circle are collinear.   [ Hints :   Let  L  be the line, and let  Q   be 

the center of the circle, and suppose that  L  contains three points of the circle  ΓΓΓΓ        with 
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center  Q  and radius  r.  There are two cases depending upon whether or not  Q  ∈∈∈∈  L.  

Use the Ruler Axiom to prove the result in the first case.  In the second case, if the circle 
contains three points of the circle, explain why we can label then  X,  Y,  Z   such that  

X∗Y∗Z.    Show that   |∠∠∠∠QXY|   =   |∠∠∠∠QYX|   =   |∠∠∠∠QZY|   =   |∠∠∠∠QXY|  using the 

Isosceles Triangle Theorem.  On the other hand, why do we also know that   

|∠∠∠∠QYX|  +  |∠∠∠∠QXY|   =   180°,    and why does this yield a contradiction? ] 
 

10.  Let  A,  B,   C  be three distinct noncollinear points.  Prove that there is a unique 
circle containing them. 
 

11.  Let  A  and  B  be distinct points, let  D  be the midpoint of   [AB], and let  Ω  be 

the set of all points  X  such that X = A,  X = B,  or  X  does  not   lie on  AB  and   

AX ⊥⊥⊥⊥ XB.   Prove that  Ω  is the circle with center  D  and radius  ½ d(A, B). 
 

12.  Let  L  and  M  be the coordinate axes in  RRRR
2
, and let  S  be the set of all points  

Z  such that   d(Z, L)  +  d(Z, M)   =   d(Z, Q) 

2
,  where  d(Z, K)  is distance from a point  

Z  to the foot of the perpendicular to the line  K  containing  Z  and  Q  denotes the origin.  
Prove that  S  is the union of four circular arcs; describe each arc in terms of its 
endpoints, the centers of the circles, and whether it is a minor arc, semicircle or major 
arc.   [ Hint :   Look first at the set of points in  S  which also lie in the closed first 

quadrant of points whose coordinates are both nonnegative. ] 
 

13.  Let  ΓΓΓΓ     be a circle with center  Q,  let  A  be a point on that circle,  and let   Ω   be 

the set of all points  X  such that either  X = A  or else is the midpoint of the segment 

[AB]  for some  B  ∈∈∈∈  ΓΓΓΓ.  Prove that  Ω  is a circle whose center is the midpoint of [AQ].   

[ Hint :   First consider the special case where  Q  is the origin and  A  is the point with 

coordinates  (a, 0);  use coordinates to prove the result in this case.  One can then 
modify the argument to work in the general case by taking  U  to be the unit vector in the 

direction of  A – Q  and defining  V  to be a unit vector in a perpendicular direction. ] 
 

14.  Let  ΓΓΓΓ     be a circle with center  Q,  let  A,  B,  C,  D  be four points on  ΓΓΓΓ     such that  
Q  does not lie on  AB  or  CD, and let  E  and  F  be the feet of the perpendiculars from  

Q  to  AB  and  CD  respectively.  Prove that   d(A, B)   =   d(C, D)  if and only if  d(Q, E)   

=   d(Q, F).  [ This is often stated in the form,  two chords of a circle have equal length if 

and only if the distances from the center of the circle to these chords are equal. ] 
 

15.  Suppose that  A,  B,  C,  D  are the vertices of a convex kite as defined in 

Exercise I I I.3.22.  Prove that there is a circle  ΓΓΓΓ        such that all four sides of the 

quadrilateral  ABCD  are tangent lines to  ΓΓΓΓ.  .  .  .  [ Hint :   By the definition of a convex kite 

we have  d(A, B)  =  d(A, D)  and   d(C, B)  =  d(C, D).  Explain why the diagonal  

[AC]   is contained in the bisectors for both  |∠∠∠∠DAB|  and  |∠∠∠∠BCD|,  explain why the 

bisector of   ∠∠∠∠ABC  meets the open diagonal  (AC)  in some point  Q,  and explain why  

[DQ   bisects  ∠∠∠∠ADC.   Finally, explain why the point  Q  is equidistant from all four sides 

of  ABCD,  and use this to find the circle  ΓΓΓΓ. ] 
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I I I.7 : Areas and volumes 

 

 
1.  Prove that the area of the region bounded by a rhombus is equal to half the 
product of the lengths of its diagonals. 
 

2.  Using Heron’s Formula, derive a formula for the area of the region bounded by 

an equilateral triangle whose sides all have length equal to  a. 
 

3.  Is there a formula for the area of the region bounded by a convex quadrilateral in 
terms of the lengths of the four sides (and nothing else)?  Give reasons for your answer. 
[ Footnote :   Compare this with the formula of Brahmagupta, which is stated in the notes 
and is valid if the vertices all lie on a circle. ] 
 

4.  Suppose that the radius of the circle inscribed in  ����ABC  is equal to  q.  Using 

Heron’s Formula, prove that  q  is equal to  sqrt( (s – a)(s – b)(s – c)/s ).  [ Hint :   

Look at the drawing for Theorem  I I I.4.8, and explain why this figure leads to a formula 

for the area of the triangle in terms of  q  and  s . ] 
 

5.  In the drawing below, the blue lines are the axes in the coordinate plane, the 

points  S,  T,  U  and  V  have coordinates  (1, 1),  (–1, 1),  (–1, –1)  and  (1, –1) 

respectively, and the large circle containing them has equation   x
2
  +  y

2
   =   2.   The 

point  Q  is the center of this circle, the point  X  is  (0, 1),  the smaller semicircles have 

radius  1,  and the numbers  A,  B,  C  denote the areas of the regions bounded by the 

appropriate curves.  Using the standard formula AREA (ΓΓΓΓ)  =   ππππ    r 

2 
  for a solid region 

bounded by a circle  ΓΓΓΓ        of radius  r,  show that  A  =  C  and use this to evaluate  C  

explicitly as a radical expression involving positive integers.    An informal argument 
will be acceptable.   Here is a drawing which depicts the data of the problem: 
 

 
 

[ Hint :   Show that the area  B + C  of the smaller semicircular regions is half the area of 

the semicircular region bounded by  [US]  and the semicircle containing  U,  S  and  T . ] 
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Notes :   This relationship was discovered by Hippocrates of Chios (470 – 410 B. C. E.), 

who was not the same person as the celebrated physician Hippocrates of Kos (460 – 
377 B. C. E.).   Further information on problems of this sort is summarized following the 
solution to this exercise (see the  solutions  file for this section), and there also is a 

detailed discussion of the topic at a fairly elementary level in Chapter 10 of the following 
book: 
 

T. Dantzig,  Mathematics in Ancient Greece (Reprint of the 1955 

book, The Bequest of the Greeks).  Dover, New York, 2006. 
 

The original edition of this book is also available at the following online site: 
 

http://ia310936.us.archive.org/1/items/bequestofthegree032880mbp/bequestofthegree032880mbp.pdf 

 


