MORE EXERCISES FOR SECTIONS III. 1 AND III. 2

Definition. If V is a vector subspace of \mathbb{R}^{n} then its orthogonal complement V^{\perp} is the set of all $\mathbf{x} \in \mathbb{R}^{n}$ such that $\mathbf{x} \cdot \mathbf{v}=0$ for all $\mathbf{v} \in V$.

D1. Suppose that V is an r-dimensional vector subspace of \mathbb{R}^{n}. Prove that the orthogonal complement V^{\perp} is an $(n-r)$-dimensional vector subspace of \mathbb{R}^{n} and that $\left(V^{\perp}\right)^{\perp}=V$. [Hint: Take an orthonormal basis B for V, extend it to a basis for \mathbb{R}^{n} by adding a suitable set of vectors A, and use the Gram-Schmidt process to find an orthonormal basis C of \mathbb{R}^{n} containing B. Show that the set D of all vectors in C but not B must be an orthonormal basis for V^{\perp}. For the final assertion show that V is a vector subspace of $\left(V^{\perp}\right)^{\perp}=V$ and the dimensions of these two subspaces are equal.]

D2. \quad Suppose that V and W are respectively $1-$ and 2 -dimensional vector subspaces of \mathbb{R}^{3} such that $V \cap W=\{\mathbf{0}\}$ but $V \neq W^{\perp}$. Prove that $V^{\perp} \cap W$ is a 1 -dimensional vector subspace of \mathbb{R}^{3}.

D3. Let L and P be a line and plane in \mathbb{R}^{3} which meet at a point \mathbf{x}, and assume that L is not perpendicular to P. Prove that there is a unique line M such that $\mathrm{x} \in M \subset P$ and $L \perp M$.

D4. Suppose that we are given positive numbers a and x. Prove that there is an isosceles triangle $\triangle A B C$ with $d(B, C)=a$ and $d(A, B)=d(B, C)=x$ if and only if $2 x>a$. [Hint: For one direction use the Triangle Inequality, and for the other direction show that if $2 x>a$ then there is right triangle whose hypotenuse has length x and one of whose other sides has length $a / 2$. How can we use this to construct an isosceles triangle with the desired measurements?]

