MORE EXERCISES FOR SECTIONS III.1 AND III.2

Definition. If V is a vector subspace of \mathbb{R}^n then its orthogonal complement V^{\perp} is the set of all $\mathbf{x} \in \mathbb{R}^n$ such that $\mathbf{x} \cdot \mathbf{v} = 0$ for all $\mathbf{v} \in V$.

D1. Suppose that V is an r-dimensional vector subspace of \mathbb{R}^n . Prove that the orthogonal complement V^{\perp} is an (n-r)-dimensional vector subspace of \mathbb{R}^n and that $(V^{\perp})^{\perp} = V$. [*Hint:* Take an orthonormal basis B for V, extend it to a basis for \mathbb{R}^n by adding a suitable set of vectors A, and use the Gram-Schmidt process to find an orthonormal basis C of \mathbb{R}^n containing B. Show that the set D of all vectors in C but not B must be an orthonormal basis for V^{\perp} . For the final assertion show that V is a vector subspace of $(V^{\perp})^{\perp} = V$ and the dimensions of these two subspaces are equal.]

D2. Suppose that V and W are respectively 1– and 2–dimensional vector subspaces of \mathbb{R}^3 such that $V \cap W = \{\mathbf{0}\}$ but $V \neq W^{\perp}$. Prove that $V^{\perp} \cap W$ is a 1–dimensional vector subspace of \mathbb{R}^3 .

D3. Let *L* and *P* be a line and plane in \mathbb{R}^3 which meet at a point **x**, and assume that *L* is not perpendicular to *P*. Prove that there is a unique line *M* such that $\mathbf{x} \in M \subset P$ and $L \perp M$.

D4. Suppose that we are given positive numbers a and x. Prove that there is an isosceles triangle ΔABC with d(B,C) = a and d(A,B) = d(B,C) = x if and only if 2x > a. [*Hint:* For one direction use the Triangle Inequality, and for the other direction show that if 2x > a then there is right triangle whose hypotenuse has length x and one of whose other sides has length a/2. How can we use this to construct an isosceles triangle with the desired measurements?]