SOLUTIONS TO ADDITIONAL EXERCISES ON BARYCENTRIC COORDINATES

Here are the solutions to the exercises A1.-A3 in barycentric-exercises.pdf. Illustrations to accompany these solutions are given in the online file

barycentric-figures.pdf

in the course directory.

A1. If D is the point whose barycentric coordinates are to be found, then we need to express D - A as a linear combination of B - A and C - A. The data in the problem imply that B - A = (2, 0) and C - A = (2, -2).

For the first part of the problem we know that D - A = (a + 1, a - 1). Thus we need to solve the system of linear equations given by

$$(a+1, a-1) = v(2, 0) + w(2, -2) = (2v + 2w, -2w)$$

for v and w; the third barycentric coordinate is then given by u = 1 - v - w. The solution to the displayed system of equations is given by $w = \frac{1}{2}(1-a)$ and v = a. Using these and u + v + w = 1, we also conclude that $u = \frac{1}{2}(1-a)$.

For the second part or the problem, we have $D = (\frac{2}{3}, \frac{3}{4})$, so that $D - A = (\frac{5}{3}, -\frac{1}{4})$ and the corresponding system of equations is

$$2v + 2w = \frac{5}{3}$$
, $-2w = -\frac{1}{4}$.

The solution to this system is $v = \frac{17}{24}$ and $w = \frac{1}{8}$, so that $u = \frac{1}{6}$.

A2. We have B - A = (-1, -2) and C - A = (1, -1). Since D - A = (n, 9 - n) where $0 \le n \le 5$, it follows that we need to solve the system

$$(n, 9-n) = v(-1, -2) + w(1, -1) = (-v + w, -2v - w)$$

for v and w and then to set u = 1 - v - w. It follows that v = -3, w = n - 3 and u = 7 - n.

n	u	v	w
0	7	-3	-3
1	6	-3	-2
2	5	-3	-1
3	4	-3	0
4	3	-3	1
5	2	-3	2

A3. We have B - A = (1, -2), C - A = (3, -2), and D - A = (0, x + 2). Therefore we need to solve the system

$$(0,-2) = v(1,-2) + w(3,-2) = (v+3w,-2v-2w)$$

for v and w when x takes one of the specified values, and once again we can compute u from v and w. The solutions to the system of equations is $v = 1 - \frac{3}{4}x$, $w = \frac{1}{4}x$, and $u = \frac{1}{2}u$. Here is the corresponding table of values:

x	u	v	w
1/2	1/4	5/8	1/8
1	1/2	1/4	1/4
2	1	-1/2	1/2
4	2	-2	1