SOLUTIONS TO ADDITIONAL EXERCISES ON BARYCENTRIC COORDINATES

Here are the solutions to the exercises A1.-A3 in barycentric-exercises.pdf. Illustrations to accompany these solutions are given in the online file

```
barycentric-figures.pdf
```

in the course directory.
A1. If D is the point whose barycentric coordinates are to be found, then we need to express $D-A$ as a linear combination of $B-A$ and $C-A$. The data in the problem imply that $B-A=(2,0)$ and $C-A=(2,-2)$.

For the first part of the problem we know that $D-A=(a+1, a-1)$. Thus we need to solve the system of linear equations given by

$$
(a+1, a-1)=v(2,0)+w(2,-2)=(2 v+2 w,-2 w)
$$

for v and w; the third barycentric coordinate is then given by $u=1-v-w$. The solution to the displayed system of equations is given by $w=\frac{1}{2}(1-a)$ and $v=a$. Using these and $u+v+w=1$, we also conclude that $u=\frac{1}{2}(1-a)$.

For the second part or the problem, we have $D=\left(\frac{2}{3}, \frac{3}{4}\right)$, so that $D-A=\left(\frac{5}{3},-\frac{1}{4}\right)$ and the corresponding system of equations is

$$
2 v+2 w=\frac{5}{3}, \quad-2 w=-\frac{1}{4} .
$$

The solution to this systen is $v=\frac{17}{24}$ and $w=\frac{1}{8}$, so that $u=\frac{1}{6}$.■
A2. We have $B-A=(-1,-2)$ and $C-A=(1,-1)$. Since $D-A=(n, 9-n)$ where $0 \leq n \leq 5$, it follows that we need to solve the system

$$
(n, 9-n)=v(-1,-2)+w(1,-1)=(-v+w,-2 v-w)
$$

for v and w and then to set $u=1-v-w$. It follows that $v=-3, w=n-3$ and $u=7-n$.

n	u	v	w
0	7	-3	-3
1	6	-3	-2
2	5	-3	-1
3	4	-3	0
4	3	-3	1
5	2	-3	2

A3. We have $B-A=(1,-2), C-A=(3,-2)$, and $D-A=(0, x+2)$. Therefore we need to solve the system

$$
(0,-2)=v(1,-2)+w(3,-2)=(v+3 w,-2 v-2 w)
$$

for v and w when x takes one of the specified values, and once again we can compute u from v and w. The solutions to the system of equations is $v=1-\frac{3}{4} x, w=\frac{1}{4} x$, and $u=\frac{1}{2} u$. Here is the corresponding table of values:

x	u	v	w
$1 / 2$	$1 / 4$	$5 / 8$	$1 / 8$
1	$1 / 2$	$1 / 4$	$1 / 4$
2	1	$-1 / 2$	$1 / 2$
4	2	-2	1

