SOLUTIONS TO EXERCISES ON AFFINE EQUIVALENCE

Here are the solutions to the additional exercises in affexercises.pdf.
T 1. No points of K lie on L, so either all points lie on one side of L or else L contains points \mathbf{x} and \mathbf{y} on opposite sides of L. In the latter case, there is a point $\mathbf{z} \in(\mathbf{x y}) \cap L$. By convexity we also have $\mathbf{z} \in K$, so that L and K have a point in common, contradicting our original assumption. The source of this contradiction is the assumption that K contains points on both sides of L, so this must be impossible.

T2. By Corollary II.8.4 we know that the affine transformation F must send the ray $[\mathbf{b a}$ to $[F(\mathbf{b}) F(\mathbf{a})$, and likewise F sends $[\mathbf{b c}$ to $[F(\mathbf{b}) F(\mathbf{c})$. As noted in the hint, F also maps a union $X \cup Y$ to $F[X] \cup F[Y]$; since an angle is the union of two noncollinear rays with the same endpoint, these combine to show that F maps $\angle \mathbf{a b c}$ to $\angle F(\mathbf{a}) F(\mathbf{b}) F(\mathbf{c}) . ■$

T3. We know that \mathbb{R}^{2} is the union of the three pairwise disjoint subsets $\angle \mathbf{a b c}$, Interior ($\angle \mathbf{a b c}$) and Exterior ($\angle \mathbf{a b c}$). Since F is a $1-1$ correspondence from \mathbb{R}^{2} to itself, it follows that the images of these three subsets are pairwise disjoint subsets whose unions are all of \mathbb{R}^{2}. By the preceding exercise we know F maps $\angle \mathbf{a b c}$ to $\angle F(\mathbf{a}) F(\mathbf{b}) F(\mathbf{c})$, and by Theorem 12 in affine-convex.pdf we know that F also maps Interior ($\angle \mathbf{a b c}$) to the interior of $\angle F(\mathbf{a}) F(\mathbf{b}) F(\mathbf{c})$. Therefore F must also send

$$
\text { Exterior }(\angle \mathbf{a b c})=\mathbb{R}^{2}-(\angle \mathbf{a b c} \cup \text { Interior }(\angle \mathbf{a b c}))
$$

to the complement of $\angle F(\mathbf{a}) F(\mathbf{b}) F(\mathbf{c}) \cup$ Interior (same). Since the latter set is the exterior of $\angle F(\mathbf{a}) F(\mathbf{b}) F(\mathbf{c})$, it follows that it must be the image of Exterior ($\angle \mathbf{a b c}$) under F.

T4. (i) Since $A * C * B$ is true it follows that A and C lie on the same side of M, and likewise it follows that B and C lie on the same side of L. Hence the strip is nonempty because there is at least one point $A \in L$ and at least one point $B \in M$. By definition the strip is the intersection of two convex sets; since an intersection of convex sets is also convex, the strip itself is convex.-
(ii) As in the preceding result let $A \in L$ and $B \in M$. By Theorem 11 in affineconvex.pdf it follows that F sends the side of L containing B to the side of $F[L]$ containing $F(B)$ and it also sends the side of M containing A to the side of $F[M]$ containing $F(A)$. By definition the intersection of the two images is the strip between $F[L]$ and $F[M]$, and therefore F maps one parallel strip to the other as asserted in the exercise.■

T5. If $\mathbf{p} \in K_{1}$, then either $\mathbf{p} \in H_{1}$ or $\mathbf{p} \in H_{2}$ because \mathbf{p} lies in $\mathbb{R}^{2}-L$.
Case 1. Assume $\mathbf{p} \in H_{1}$. Then the solution to Exercise T1 implies that $K_{1} \subset H_{1}$. Similarly, since $\mathbf{p} \in K_{1} \subset H_{1}$ we must also have $H_{1} \subset K_{1}$, so that $H_{1}=K_{1}$. Now assume that $\mathbf{q} \in K_{2}$, so that either $\mathbf{q} \in H_{1}$ or $\mathbf{q} \in H_{2}$. If $\mathbf{q} \in H_{1}$, then the same considerations as before show that $K_{2} \subset H_{1}$ and hence $\mathbb{R}^{2}-L \subset H_{1}$, which we know is false. Therefore we must have $\mathbf{q} \in H_{2}$, and by the previous reasoning this implies that $K_{2} \subset H_{2}$, which in turn implies that $K_{2}=H_{2}$.

Case 2. Assume $\mathbf{p} \in H_{2}$. If we switch the roles of H_{1} and H_{2} in the preceding paragraph, we obtain the conclusion that $K_{1}=H_{2}$ and $K_{2}=H_{1}$.■

