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V. Introduction to non – Euclidean geometry

V.1 : Facts from spherical geometry

1. The minor arc for A and B consists of A, B and all points of the circle Γ which are on
the opposite side of as its center Q. Suppose that we have a pair of diametrically opposite points
X and Y on the circle. We first claim that both cannot lie on the union of AB with the side of AB
opposite Q.

First of all, both cannot lie on AB because AB meets Γ in exactly two points (A and B), and
by hypotheses these points are not diametrically opposite. Suppose now that one of the points,
say X is on the line AB. Then X ∗ Q ∗ Y implies that Y and Q are on the same side of AB, so
in particular it follows that Y cannot lie on the minor arc determined by A and B since this arc
contains no points on the same side of AB as Q. Furthermore, if neither X nor Y lies on AB,
suppose that both do line on the minor arc; it follows that they lie on the side of that line opposite
Q. On the other hand, since X ∗ Q ∗ Y holds it follows that Q also lies on this side, which yields a
contradiction since Q cannot lie on the side opposite itself. This contradiction completes the proof
that the minor arc does not contain a pair of diametrically opposite points.

On the other hand, the major arc contains many pairs of diametrically opposite points. For
example, if we take C on the circle such that A ∗ Q ∗ C, then it follows that C and Q lie on the
same side of AB and therefore C lies on the major arc determined by A and B.

2. As indicated in the hint, the center w of the circle is the foot of the perpendicular from
the sphere center Q to the plane. The perpendicular direction to the plane x + y + z = 1 is given
by the vector (1, 1, 1), so w is the unique point t(1, 1, 1) which lies on the plane x+ y + z = 1. This
means that 3t = 1, so that t = 1

3
. The radius a of the circle is given by

√

r2 − |w|2, where r = 1 is

the radius of the sphere. Since |w|2 = 1

9
, it follows that a =

√

1 − 1

3
=

√

2

3
.

3. Suppose that Σ1 and Σ2 are respectively defined by the equations

(1) |v − a|2 = p2

(2) |v − b|2 = q2

where a 6= b. If we subtract the second equation from the first, we obtain the following linear
equation:

(3) 2 · 〈x, a − b〉 + |a|2 − |b|2 = p2 − q2 .
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This equation defines a plane whose normal direction is a − b, and it follows that if Σ1 ∩ Σ2 is
nonempty, then it is contained in a plane which is perpendicular to the line joining a and b.

It follows immediately that the systems of equations {(1), (2)}, {(1), (3)}, and {(2), (3)} are
equivalent. Therefore, if Π is the plane determined by (3), then we have

Σ1 ∩ Σ2 = Σ1 ∩ Π = Σ2 ∩ Π .

This is what we wanted to prove.

4. Let Q be the center of Σ.

Suppose first that Σ ∩ P = {X}. Let Y be another point of P ; we need to show that
QX ⊥ XY . Let N be the plane determined by Q, X and Y ; observe that these three points are not
collinear because Q ∈ XY implies Q ∈ P , which in turn implies that Σ∩P is a circle. Since Q ∈ N ,
it follows that N ∩Σ is a circle that we shall call ΓN . It follows immediately that ΓN ∩XY = {X}
because this intersection is contained in Σ ∩ P = {X} and X lies on ΓN and XY . By the theorems
on circles, it follows that QX must be perpendicular to XY .

Conversely, suppose that QX ⊥ P . If Y is any other point in the plane P , then we are given
that Q 6∈ P and hence the points Q, X and Y must be noncollinear. In the right triangle ∆QXY
we know that the length of the hypotenuse d(Q,Y ) is greater than d(Q,X); but this means that
Y cannot lie on the sphere Σ, whose center is Q and whose radius is d(Q,X).

V.2 : Attempts to prove Euclid’s Fifth Postulate

1. (a) Follow the hint. First of all, there is a ruler function f : L → R such that f(A) <
f(B). If g is an arbitrary ruler function, then either g(A) < g(B) or else g(A) > g(B). Take g = f
in the first case and g = −f in the second.

Now choose Y to be the unique point on the line so that f(Y ) = f(A) + x. It follows
immediately that d(Y,A) = x, so we have to show that Y is on (AB and in fact is the unique point
such that d(A, Y ) = x.

Suppose that Z is an arbitrary point such that d(A,Z) = x. Then |f(A) − f(Z)| = x implies
that f(Z) = f(A) ± x, so that either Z = Y or else Z is the unique point W such that f(W ) =
f(A) − x. It follows immediately that d(W,B) = d(W,A) + d(A,B), so that W ∗ A ∗ B is true.
This means that W 6∈ [AB, and the only point on the latter ray with the prescribed distance from
A would have to be Y .

There are now three cases, depending upon whether x < d(A,B), x = d(A,B), or x > d(A,B).
In the first case we have f(A) < f(Y ) < f(B), which implies that d(A,B) = d(A, Y )+d(Y,B) and
hence A ∗ Y ∗ B is true. In the second we have f(Y ) = f(B) so that Y = B. Finaly, In the third
case we have f(A) < f(B) < f(Y ), which implies that d(A, Y ) = d(A,B) + d(B, Y ) and hence
A ∗ B ∗ Y is true. In each of the three cases we find that Y ∈ [AB, and the conclusions about
ordering follow directly from the observations we have made in this paragraph.

(b) Follow the hint and let L = AB for suitable points A 6= B. By Exercise II.4.9 there is a point
Y such that Y and X lie on opposite sides of AB with d(A,X) = d(A, Y ) and | 6 XAB| = | 6 Y AB|.
By SAS we have ∆XAB ∼= ∆Y AB, so that d(B,X) = d(B, Y ). Since A and B are equidistant
from X and Y , it follows that L = AB is the perpendicular bisector of [XY ]. This proves the
existence part of the theorem.
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To prove uniqueness, suppose that there are two points C and D on L such that XC ⊥ L
and XD ⊥ L. Now let E be a point such that C ∗ D ∗ E. By the Exterior Angle Theorem we
should have | 6 XDE| > | 6 XCD|; however, both angles in question are right angles, and thus we
have a contradiction. The source of this contradiction is our assumption that there are two distinct
perpendiculars from X to L, and thus it follows that there can only be one such perpendicular.

Alternate approach to uniqueness. Here is a longer argument that is more self-contained
because it does not require the Exterior Angle Theorem. — As before, suppose that we are given a
line L and an external point X with two perpendiculars from X to L, and denote the feet of these
perpendiculars by C and D. Then the Isosceles Triangle Theorem implies that d(X,C) = d(X,D).
Let Y and Z be points such that X ∗ C ∗ Y , X ∗ D ∗ Z, and d(X,Y ) = 2 · d(X,C) = 2 · d(X,D) =
d(X,Z). By construction, both Y and Z lie on the side of L opposite X, and since C 6= D it
follows that XY 6= XZ. We now have ∆CDZ ∼= ∆CDX by SAS, and if we combine this with
the isosceles triangle self-congruence ∆CDX ∼= ∆DCX, we conclude that ZC ⊥ CD = L. On the
other hand, since X ∗C ∗Y we also have Y C = XC ⊥ CD = L, so Y and Z are points on the same
side of L = CD such that | 6 Y CD| = | 6 ZCD| = 90◦. The Protractor Postulate for angle measures
then implies that [CZ = [CY . This in turn implies that the lines CZ = XZ and CY = XY must
be equal, contradicting our earlier conclusion that XY 6= XZ. The source of this contradiction is
our assumption that there are two points C, D on L such that both XC and XD are perpendicular
to L, and hence this must be false; in other words, there is at most one perpendicular to L through
X.

(c) Define D as suggested in the hint, so that A ∗ B ∗ D and d(A,D) = d(A,B) + d(B,C).
It follows that B ∈ Int 6 ACD and hence | 6 ACD| > | 6 BCD|. On the other hand, the Isosceles
Triangle Theorem implies that | 6 BCD| = | 6 BDC = 6 ADC|, so that | 6 ACD| > | 6 ADC|. Since
the longer side of a triangle is opposite the larger angle, it follows that d(A,C) < d(A,D) =
d(A,B) + d(B,C).

(d) It suffices to consider the case where d(A,C) > d(D,F ), for if equality holds then one can
derive the congruence conclusion by SAS, while if the reverse inequality holds one can proceed as
in the originally stated case by reversing the roles of the two triangles.

Let G ∈ (AC be such that d(A,G) = d(D,F ); it follows that G ∈ (AC). Furthermore, by SAS

we have ∆GAB ∼= ∆FDE. This in turn implies that | 6 GAB| = | 6 FDE| = | 6 CAB|. However,
since A ∗ G ∗ C holds, we must have | 6 GAB| > | 6 CAB|, a contradiction. The source of this
contradiction is our assumption that d(A,C) > d(D,F ), and hence the latter must be false. — As
indicated in the first paragraph, one can similarly exclude the possibility that d(A,C) < d(D,F ),
and thus the only possibility is d(A,C) = d(D,F ). As noted above, if we know this then we obtain
the congruence relationship by SAS.

V.3 : Neutral geometry

1. Let L be a line, and take points A, B ∈ L such that d(A,B) = q. Let X be a point which
does not lie on L, and consider the plane Π determined by L and X. By the Protractor Postulate
there exist points U and V on the same side of L as X (in Π) such that UA ⊥ AB and V B ⊥ AB.
By Proposition II.3.1 there exist points D ∈ (AU and C ∈ (BV such that d(A,D) = d(B,C) = p.
By Proposition V.3.5 it follows that A, B, C, D determine the vertices of a convex quadrilateral,
and by construction it is a Saccheri quadrilateral.

2. Follow the hint. We have k/h > 0, so by density of the rationals there is a rational number
m/n such that m,n > 0 and 0 < m/n < k/h. But then we also have 0 < 1/n ≤ m/n < k/h,
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and these inequalities yield h/n < k. Since n < 2n for all positive integers n, it follows that
0 < h/2n < h/n < k, as stated in the exercise.

3. By SAS we have ∆DAB ∼= ∆CBA, so that the diagonals satisfy d(B,D) = d(A,C).
Therefore by SSS we have ∆CDA ∼= ∆DCB, and this implies | 6 CDA| = | 6 DCB|.

4. Let X and Y be the midpoints of [AB] and [CD] respectively. Then we have ∆DAX ∼=
∆CBX by SAS, so that d(X,D) = d(X,C), so that XY is the perpendicular bisector of [CD].
Similarly, we have ∆ADY ∼= ∆BCY by SAS (this requires the previous exercise!), and therefore
d(Y,A) = d(Y,B), so that XY is the perpendicular bisector of [AB]. Therefore XY is perpendicular
to AB and CD.

4. We shall follow the hints. The proof of the inequality

d(G1, Gn) ≤ d(G1, G2) + · · · + d(Gn−1, Gn)

proceeds by induction on n ≥ 2. For n = 2 is simply says d(G1, G2) ≤ d(G1, G2). Suppose the
statement is true for n ≥ 2. Then by the Triangle Inequality we have

d(G1, Gn+1) ≤ d(G1, Gn) + d(Gn, Gn+1) ≤
(

d(G1, G2) + · · · + d(Gn−1, Gn)
)

+ d(Gn, Gn+1)

and hence the statement is also true for n + 1, completing the verification of the inductive step.

We continue by taking X0 = A, X1 = B, Y1 = C and Y0 = D. Next, we take points Xk on
[X0X1 such that d(X0, Xk) = k ·d(X0, X1) = k ·d(A,B). It then follows that we have X0∗Xk∗Xk+1

for all k ≥ 1 and therefore we have d(Xk, Xk+1) = d(X0, X1) = d(A,B). The idea is to construct
a sequence of Saccheri quadrilaterals side by side so that the first one is the original quadrilateral
and all have the same size and shape. To do this, for each k ≥ 2 let Yk be a point such that

(1) Yk is on the same side of X0X1 = AB as Y0 = D and Y1 = C,

(2) YkXk is perpendicular to X0X1 = AB, and

(3) d(Yk, Xk) = d(B,C) = d(A,D).

It follows that fore each k the points Xk, Xk+1, Yk and Yk+1 are the vertices of a Saccheri quadri-
lateral with base given by [XkXk+1].

The next step is to prove that the summits of these Saccheri quadrilaterals all have equal length,
and to do this we must consider the auxiliary diagonal segments [XkYk−1]. It will suffice to prove
that d(Yk−1, Yk) = d(Yk, Yk+1) for each k. First of all, we know that ∆Yk−1YkXk

∼= ∆YkXkXk+1

by SAS. Therefore we have d(Xk, Yk−1) = d(Xk+1, Yk) and also | 6 Xk−1XkYk−1| = | 6 XkXk+1Yk|.
Since Saccheri quadrilaterals are convex quadrilaterals, it follows that Yk−1 and Yk lie in the interiors
of of the respective right angles 6 Xk−1XkYk and 6 XkXk+1Yk+1. Therefore we have

| 6 YkXkYk−1| = 90 − | 6 Xk−1XkYk−1| = 90 − | 6 XkXk+1Yk| = | 6 Yk+1Xk+1Yk| .

It follows that |∆YkXkYk−1| ∼= |∆Yk+1Xk+1Yk| by SAS, which in turn implies that d(Yk−1, Yk) =
d(Yk, Yk+1) as claimed.

We now combine the conclusion of the preceding sentence with the inequality in the first
paragraph for each positive integer n to obtain the inequalities

n · d(A,B) = d(X0, Xn) ≤
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d(X0, Y0) + d(Y0, Y1) + d(Y1, Y2) + · · · + d(Yn − 1, Yn) + d(Yn, Xn) =

n · d(C,D) + 2 · d(A,D) .

Dividing both sides by n, we see that for each positive integer n we have

d(A,B) ≤ d(C,D) +
2

n
· d(A,D) .

We claim that d(A,B) ≤ d(C,D) follows from this; suppose to the contrary that d(A,B) > d(C,D),
and write d(A,B) = d(C,D) + h where h > 0. We know that if n is sufficiently large then
2 · d(C,D)/n < h, and for such values of n we conclude that

d(A,B) ≤ d(C,D) +
2

n
· d(A,B) < d(C,D) + h = d(A,B)

which is a contradiction. Therefore we must have d(A,B) ≤ d(C,D) as asserted in the exercise.

6. The hypotheses imply that d(A,B) = d(E,F ) and d(A,D) = d(B,C) = d(E,H) =
d(F,G). By SAS we have ∆DAB ∼= ∆HEF , and hence we also have d(B,D) = d(F,H) and
| 6 DBA| = | 6 HFE|. Since the ♦ABCD and ♦EFGH are Saccheri (hence convex) quadrilaterals,
we know that B ∈ Int 6 ABC and H ∈ Int 6 EFG. By additivity of angle measure, we then obtain

| 6 DBC| + 90 − | 6 DBA| = 90 − | 6 HFE| = | 6 HFG| .

Now we can use SAS to conclude that ∆DBC ∼= ∆HFG, which implies that d(C,D) = d(G,H)
— in other words, the summits have equal length — and | 6 DCB| = | 6 HGF . Since the summit
angles of a Saccheri quadrilateral have equal measures, it also follows that | 6 ADC| = | 6 DCB| =
| 6 HGF | = | 6 GHE|, completing the proof.

7. If we can prove the result with one of the two possible hypotheses on equal lengths, then
the other will follow by interchanging the roles of the vertices, so we might as well assume that
d(A,B) = d(E,F ).

By SAS we have ∆ABC ∼= ∆EFG, and hence we also have d(A,C) = d(E,G), | 6 CAB| =
| 6 GEF |, and | 6 ACB| = | 6 EGF |. Since a Lambert quadrilateral is automatically a convex quadri-
lateral, it follows that C ∈ Int 6 DAB and G ∈ Int 6 HEF ; therefore by the additivity of angle
measure we have

| 6 DAC| + 90 − | 6 CAB| = 90 − | 6 GEF | = | 6 GEH| .

Similarly, we have A ∈ Int 6 BCD and E ∈ Int 6 FGH, so that

| 6 ACD| + 90 − | 6 ACB| = 90 − | 6 EGF | = | 6 EGH| .

Combining these, we see that ∆DAC ∼= ∆HEG by ASA, so that d(C,D) = d(G,H), d(A,D) =
d(E,H) and | 6 ADC| = | 6 EHG|, completing the proof.

8. By the result in the second exercise, it suffices to show that there is a right angle at D
(because that will imply there is also a right angle at C). Since the summit and base have equal
length, by SSS we must have ADC ∼= ∆CBA, so that | 6 ADC| = | 6 CBA| = 90.

9. Following the hint, we begin by showing that it is enough to show that d(A,D) ≤ d(B,C).
—- If we know this, then we can conclude that d(A,B) ≤ d(C,D) by reversing the roles of A and
C in the discussion which follows.
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We know there is a point E ∈ (AB such that d(A,E) = 2·d(A,B), and since d(A,B) < d(A,E)
it follows that A∗B∗E. Let [EX be the unique ray such that (EX lies on the same side of AB = AE
as D, and choose F ∈ (EX so that d(E,F ) = d(A,D). Then the points A, E, F, D (in that
order) form the vertices of a Saccheri quadrilateral with base [AE].

Let G be the midpoint of [DF ]. We claim that G = C. By Exercise 4 we know that BG is
perpendicular to both AB and DF . Since BC is also perpendicular to AB it follows that BC = BG.
Also, since both CD and GD are perpendicular BC = BG and pass through D , it follows that
CD = GD. Finally, since CD meets BC in C and GD meets BG in G, it follows that G and C
must be the same point.

By the preceding paragraph we have d(D,F ) = 2 · d(C,D). By Exercise 5 we have d(A,E) ≤
d(F,D), and if we combine these with the defining condition for E we have

2 · d(A,B) = d(A,E) ≤ d(D,F ) = 2 · d(C,D)

and if we divide these inequalities by 2 we obtain the desired relationship d(A,B) ≤ d(C,D).

10. As in the preceding exercise, it is enough to prove that the quadrilateral is a rectangle
if d(A,B) = d(C,D).

It is fairly straightforward to give a proof of this statement which does not involve the con-
struction of the preceding exercise by an argument similar to that for Exercise 8, but there is a
very short proof using the Saccheri quadrilateral given above. — If we have d(A,B) = d(C,D),
then it follows that

d(A,E) = 2 · d(A,B) = 2 · d(C,D) = d(D,F )

and hence the auxiliary Saccheri quadrilateral is a rectangle. But this means that 6 ADC = 6 ADF
is a right angle, which in turn implies that the original Lambert quadrilateral is also a rectangle.

11. By Exercise 1 we know that there is a Saccheri quadrilateral with vertices A, E, F, D
(in that order) and base [AE] such that d(A,E) = 2q and d(A,D) = p. If B and C are the
midpoints of [AE] and [DF ] respectively, then we know that BC is perpendicular to both AE and
DF , and hence the points A, B, C, D form the vertices of a Lambert quadrilateral with right
angles at A, B, C. By construction we have d(A,D) = p and d(A,B) = 1

2
· d(A,E) = q.

12. Following the hint, let E ∈ (BA such that d(B,E) = s; since d(B,E) < d(B,A) it
follows that B ∗ E ∗ A, so that E ∈ (AB). Let L be the perpendicular to AB containing E. Since
L and AD are both perpendicular to AB, it follows that L||AD.

By Pasch’s Theorem we know that L contains a point of either [AD] or (BD). Since L||AD
it follows that L and (BD) have a point in common which we shall call G. Another application of
Pasch’s Theorem shows that L must also contain a point of either [BC] or (CD). Since L and BC
are both perpendicular to AB, the first of these is impossible, and therefore we must have some
point F ∈ L ∩ (CD). Since L meets AB at E, it follows that E, B, C, F (in that order) form
the vertices of a Lambert quadrilateral with right angles at E, B, C. By construction we have
d(E,B) = s and d(B,C) = q.

13. Since E and F are midpoints of the sides containing them, we have E ∈ (AC) and
F ∈ (AB), so that 6 CAB = 6 EAF ; likewise, since E ′ and F ′ are midpoints of the sides containing
them, we have E′ ∈ (A′C ′) and F ′ ∈ (A′B′), so that 6 C ′A′B′ = 6 E′A′F ′. Therefore we have

| 6 EAF | = | 6 CAB| = | 6 C ′A′B′| = | 6 E′A′F ′| .
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But we also have
d(A,E) = 1

2
d(A,C) = 1

2
d(A′, C ′) = d(A′, E′)

d(A,F ) = 1

2
d(A,B) = 1

2
d(A′, B′) = d(A′, F ′)

and therefore by SAS we have ∆AEF ∼= ∆A′E′F ′.

To prove the remaining two statements, first change letters so that A,B,C,D,E, F and
A′, B′, C ′, D′, E′, F ′ become X,Y,Z, U, V,W and X ′, Y ′, Z ′, U ′, V ′,W ′ respectively. Then the hy-
pothesis becomes ∆XY Z ∼= ∆X ′Y ′Z ′ and the conclusion becomes ∆XV W ∼= ∆X ′V ′W ′. To
prove that ∆BFD ∼= ∆B′F ′D′, observe that if we take X,Y,Z and X ′, Y ′, Z ′ to be B,C,A
and B′, C ′, A′ respectively, then U, V,W and U ′, V ′,W ′ become E,F,D and E ′, F ′, D′ respec-
tively. Since ∆ABC ∼= ∆A′B′C ′ implies ∆BCA ∼= ∆B′C ′A′, it follows that we also have
∆BFD ∼= ∆B′F ′D′.

Similarly, to prove that ∆CDE ∼= ∆C ′D′E′, observe that if we take X,Y,Z and X ′, Y ′, Z ′ to
be C,A,B and C ′, A′, B′ respectively, then U, V,W and U ′, V ′,W ′ become F,D,E and F ′, D′, E′

respectively. Since ∆ABC ∼= ∆A′B′C ′ implies ∆CAB ∼= ∆C ′A′B′, it follows that we also have
∆CDE ∼= ∆C ′D′E′.

The preceding three arguments show that

d(E,F ) = d(E′, F ′) , d(F,D) = d(F ′, D′) , d(D,E) = d(D′, E′)

and therefore by SSS we must also have ∆DEF ∼= ∆D′E′F ′.

14. If we are working in a Euclidean plane, then we also know that the distance between
the midpoints of two sides is half the length of the third side, so that the following hold:

d(E,F ) = 1

2
d(B,C) = 1

2
d(B′, C ′) = d(E′, F ′)

d(F,D) = 1

2
d(C,A) = 1

2
d(C ′, A′) = d(F ′, D′)

d(D,E) = 1

2
d(A,B) = 1

2
d(A′, B′) = d(D′, E′)

If we combine these with the midpoint conditions which are given in the problem, then by repeated
applications of SSS we can conclude the following:

∆AFE ∼= ∆DEF ∼= ∆D′E′F ′ ∼= ∆A′F ′E′

∆BFD ∼= ∆EDF ∼= ∆E′D′F ′ ∼= ∆B′F ′D′

∆CDE ∼= ∆FED ∼= ∆F ′E′D′ ∼= ∆C ′D′E′

Finally, we may reorder vertices to rewrite the preceding in the following form:

∆AFE ∼= ∆FBD ∼= ∆EDC ∼= ∆DEF =

∆D′E′F ′ ∼= ∆E′D′C ′ ∼= ∆F ′B′D′ ∼= ∆AF ′E′

This explicitly displays the eight triangle congruences.
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V.4 : Angle defects and related phenomena

1. Suppose first that we have a Saccheri quadrilateral ♦ABCD in a hyperbolic plane with
base [AB]. By Exercise V.3.5 above, we know that d(A,B) ≤ d(C,D), and furthermore by Exercise
V.3.8 we know that if the Saccheri quadrilateral is a rectangle if equality holds. Since rectangles
do not exist in a hyperbolic plane, we must have the strict inequality d(A,B) < d(C,D).

Now suppose that that we have a Lambert quadrilateral ♦ABCD in a hyperbolic plane with
right angles at A, B, C. By Exercise V.3.9 and V.3.10 we know that d(A,B) ≤ d(C,D) and
d(A,D) ≤ d(B,C), and if either d(A,B) = d(C,D) or d(A,D) = d(B,C) then the Lambert
quadrilateral is a rectangle. As above, since rectangles do not exist in a hyperbolic plane, we must
have the strict inequalities d(A,B) < d(C,D) and d(A,D) < d(B,C).

2. This follows fairly directly from Theorem V.4.9 in the notes. By Exercise 3 from the
preceding section, we know that the lines containing the summit and base of the Saccheri quadrilat-
eral have a common perpendicular, and the theorem from the notes says that the shortest distance
from a point on one line to the other is realized at the points where the two parallel lines meet this
common perpendicular. Since the lines containing the lateral sides of a Saccheri quadrilateral are
perpendicular to the line containing the base, it follows that the length of a lateral side must be
greater than the length of the segment joining the midpoints of the summit and base, for the line
joining these two points is the common perpendicular.

3. If we split a triangle ∆ABC into two triangles by a segment [BD] where D ∈ (AC), then
we have

δ(∆ABC) = δ(∆ABD) + δ(∆ADC)

and since all numbers in sight are positive it follows that at least one of the numbers on the right
hand side is less than or equal to 1

2
δ(∆ABC). By induction, for each n we can construct a triangle

∆XnYnZn such that δ(∆XnYnZn) ≤ δ(∆ABC)/2n. One can now use the first exercise from the
preceding section to show there is some n for which the right hand side is less than ε.

4. As in the proof of the Hyperbolic AAA Congruence Theorem we know that the defects
satisfy δ(∆ADE) < δ(∆ABC). If we apply the Isosceles Triangle Theorem and the definition of
defect to both triangles we find that

180 − | 6 BAC| − 2| 6 ADE| = δ(∆ADE) < δ(∆ABC) =

180 − | 6 BAC| − 2| 6 ABC|

and from this point one cqan use standard manipulations with inequalities to prove that | 6 ADE| >
| 6 ABC|.

5. Since equilateral triangles are equiangular, we know that | 6 BAC| = | 6 ABC| = | 6 BCA|;
let us denote this common value by ξ. Since D, E and F are midpoints of the sides of an equilateral
triangle, we know that

d(A,F ) = d(F,B) = d(B,D) = d(D,C) = d(C,E) = d(E,A)

and therefore we have ∆AEF ∼= ∆BFD ∼= ∆CDE by SAS. All three of these smaller triangles
are isosceles, so that we also have

| 6 AEF | = | 6 AFE| = | 6 BFD| = | 6 BDF | = | 6 CDE| = | 6 CED|
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and we shall denote the common value by η.

The triangle congruences also imply

d(E,F ) = d(F,D) = d(D,E)

and hence ∆DEF is also an equilateral triangle. Thus it is also equiangular, so let ϕ be the measure
of the three vertex angles. The second relationship to proved in the exercise then translates to
showing that ϕ > ξ.

Since we are working in hyperbolic geometry we know that the angle sum of, say, ∆AEF is
less than 180 degrees, and if we substitute the values ξ and η into this inequality we find that
ξ + 2η < 180.

A picture suggests that we should also have ϕ + 2η = 180, but we need to prove this. A key
step in doing this is to show that E lies in the interior of 6 DFA. To prove this, first observe that
the betweenness relations C ∗ E ∗A and C ∗D ∗ B imply that C, D and E all lie on the same side
of AB. Next, the betweenness relations A ∗ F ∗ B and C ∗ D ∗ B imply that B lies on the side of
FD opposite both C and A, so that A and C lie on the same side of DF . Finally, E ∈ (AC) now
implies that A and E must lie on the same side of DF , completing the requirements for E to lie in
the interior of 6 DFA.

The preceding paragraph implies that | 6 DFA| = | 6 DFE|+ | 6 EFA| = ϕ+ η. Since A ∗F ∗B
holds, we also have

180 = | 6 DFA| + | 6 DFB| = ϕ + η + η = ϕ + 2 · η

which was the claim at the beginning of the preceding paragraph. It now follows that

ξ + 2 · η < 180 = ϕ + 2 · η

which implies ξ < η, proving the inequality stated in the second assertion of the exercise.

Finally, we need to show that the isosceles triangle ∆AEF is not an equilateral triangle.
However, the preceding exercise implies that

| 6 EFA| > | 6 ABC|

and since the right hand side is equal to | 6 CAB = 6 EAF , we can use Theorem III.2.5 (the larger
angle is opposite the longer side) to conclude that d(A,E) < d(F,A).

6. We know that there is a ray [DX such that (DX lies on the same side of AB as C
and | 6 EDA| = | 6 CBA|. The rays [DX and [BC cannot have a point in common, for if they
met at some point Y then the Exterior Angle Theorem would imply | 6 EDA| > | 6 CBA| and by
construction these two numbers are equal.

By Pasch’s Theorem the line DX must have a point in common with either [BC] or (AC).
Since [DX and [BC have no points in common by the preceding paragraph, it follows that there
must be a point E ∈ (AC) ∩ DX. Since A ∗ E ∗ C is true, it follows that E and C lie on the same
side of AB, so that [DE = [DX.

Since E ∈ (AC) and D ∈ (AB), the angle defects of ∆ABC and ∆ADE satisfy

δ(∆ABC) = δ(∆ADE) + δ(∆EDC) + δ(∆DBC)
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so that δ(∆ADE) < δ(∆ABC). On the other hand, by construction we have

δ(∆ABC) − δ(∆ADE) = | 6 AED| − | 6 ACB|

and since the left hand side is positive it follows that | 6 AED| > | 6 ACB|, which is what we wanted
to prove.

7. Suppose that the ray [AC bisects 6 DAB. Then we have | 6 CAD| = | 6 DAB| = 45◦. On
the other hand, since ∆ABC is an isosceles triangle with a right angle at B, it will follow that
| 6 ACB| = 45◦. In particular, this means that the angle defect of ∆ABC is zero. This cannot
happen in a hyperbolic plane, and therefore the ray [AC cannot bisect 6 DAB.

8. Follow the hint, so that B is a point not on a line L such that there are at least two
parallel lines to L through B. One of the lines can be constructed by dropping a perpendicular
from B to L whose foot we shall call Y , and then taking a line M which is perpendicular to BY
and passes through B. Let N be a second line through B which is parallel to L.

Since L and M are parallel, all points of L lie on the same side of M . Since N contains points
on both sides of M , it follows that there is some point A which lie on N and also on the same side
of M as L. Note that A 6∈ BY , because N ∩ BY = {B} and B ∈ M . Since M contains points on
both sides of BY , there is also a point C ∈ M which lies on the side of BY which does not contain
A (hence A and C lie on opposite sides of BY ).

We claim that L is contained in the interior of 6 ABC. The first step is to show that Y lies in
the interior of this angle. By construction we know that Y ∈ L and since L and a lie on the same
side of M , it follows that Y and A lie on the same side of M = BC. On the other hand, since A
and C lie on opposite sides of BY we know there is a point Z ∈ (AC)∩BY . It follows that A and
Z lie on the same side of BC = M , and since A and Y also lie on the same side of M it follows
that (BY = (BZ. But this means that C, Z and Y must all lie on the same side of N = AB. Thus
we have shown that Y lies in the interior of 6 ABC.

Since L does not have any points in common with either M or N , it follows that all points of
L lie on the same side of each line. We have seen that Y ∈ L lies on the same side of M = BC as
A and on the same side of N = AB as C, and therefore the same must be true for every point of
L. But this means that L is contained in the interior of 6 ABC.
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